Aucun élément trouvé.

Moving Beyond XDR to Achieve True Cyber Resilience with Darktrace ActiveAI Security Platform

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
Apr 2024
Apr 2024
Announcing the new Darktrace ActiveAI Security Platform designed to transform security operations. This approach gives security teams unprecedented visibility across any area where Darktrace is deployed, including cloud, email, network, endpoints, and operational technology (OT).

Evolving Threats Need Comprehensive Security

Attacker innovations have drastically increased the velocity, sophistication, and success of cyber security attacks, as seen with multi-domain and multi-stage attacks that are now widely used in adversary methodology.

When it comes to defense, traditional cyber security point solutions cannot keep up. They have a depth of intelligence in a specific domain but rely on existing attack data to detect threats. This allows the known to be stopped, but the uncertainty in identifying unknown threats creates an alert deluge. Security teams are then required to build processes to triage alerts, and manually combine data through APIs, integrations and rules – just to correlate incidents across multiple IT domains.

Traditional eXtended Detection and Response (XDR) rose to aid security teams, and while they are able to stitch together suspicious events from network, endpoint, and cloud, they still lack adequate domain coverage in areas such as email – where the majority of initial infection occurs – require human validation, prioritization, and triage, and ultimately remain reactive in nature.

Security teams are at a breaking point, with too many alerts, too little time, and fragmented support from a bloated vendor stack. Simply put, most organizations lack the human resources needed to maintain cyber resilience.

Introducing the Darktrace ActiveAI Security Platform

Darktrace ActiveAI Security was designed to transform security operations to a proactive state. Its AI trains on an organization’s specific business and IT information, learning the day-to-day normal operations, not yesterday's threat intelligence.

This approach gives security teams unprecedented visibility across any area where Darktrace is deployed, including cloud, email, network, endpoints, identities, and operational technology (OT). With this understanding of the business, the AI can detect and respond to known and unknown threats with precision, even those threats never seen before.

Darktrace’s proactive and incident response tools help your team get ahead of security gaps and potential process risk by understanding your internal and external threat surfaces and identifying where preparedness can be improved.

A unique and patented investigative AI, called Cyber AI Analyst, operates across the platform to augment human teams with automation and efficiency gains, performing continuous investigations of prevalent alerts to redefine the SecOps workflow and help security analysts arrive at decisions quickly.  An extensive range of services aid customer resources in getting the most out of the Darktrace ActiveAI Security Platform.

Figure 1: Powered by a self-learning AI that understands your unique business, the Darktrace ActiveAI Security Platform provides coverage across the entire enterprise. Cyber AI Analyst, our investigative AI, investigates relevant alerts helping human security teams triage and prioritize all relevant alerts, even those from 3rd party security tools, to transform security operations.

Security operations and the incident lifecycle

SOC teams have three general areas of focus, and each can be supported by Darktrace ActiveAI Security

1. The benefits of being proactive

Darktrace ActiveAI Security helps teams become proactive by identifying and closing gaps before they are exploited. This reduces the impact and cost of attacks.  

The platform achieves this by looking at each organization to understand potential human and machine entry points for an attacker. In an upcoming update, our technology will also include firewall rule analysis for more precise attack path modeling.

The AI considers its findings with local business and IT context to identify the most risky and impactful devices, identities, and vulnerabilities, so teams can prioritize what to patch first.

Additionally, Darktrace ActiveAI Security boosts proactivity with incident readiness, supporting each organization’s people, processes, and technology with training simulations, dynamic playbooks, and readiness reports.

2. Complete visibility of known and novel threats

Darktrace ActiveAI Security Platform drives efficiencies during the active incident phase, saving time and effort while providing comprehensive and tailored protection. It applies context from enterprise data, ingested from both native sources (email, cloud, operational technology, endpoints, identity, applications, and networks) and external sources (third-party security tools and intelligence) to detect known, novel, and unknown threats.

Other security vendors aggregate and generalize data across their customers, treating threat detection with a big data approach. They extract intelligence, write new rules and signatures, and train their supervised machine running in the cloud. Only after that do they distribute new detections based on the changes in the threat landscape. That leaves a window of opportunity for attackers. For example, when Log4J struck, most vendors needed precious time to catch up and defend against it

Contrast that to Darktrace’s approach to detection. Our AI continuously trains on each organization’s unique business data, allowing it to function beyond known attacks in the threat landscape. Therefore, our AI can defend organizations even against attacks that have never been seen before because it focuses on each customer’s data instead of trying to win this big data problem.

While our AI has always been able to surface threats without needing to decrypt traffic, because it can surface anomalies in the characteristics of the overall communication, an upcoming update will soon make decryption possible for deeper forensic analysis.

This also leads to massive efficiency wins. For example, self-regulation and detection accuracy. If our AI keeps seeing certain types of anomalies in an environment, and if those are part of a legitimate business process, the AI will autonomously start lowering the alert severity, therefore reducing the burden on security teams to fine-tune detection and alerting.

3. AI-led investigation and response

Darktrace ActiveAI Security Platform helps teams triage, investigate, and respond to accelerate response time and reduce disruption.

Traditional security stacks use a lot of raw data combined with threat intelligence, like rules and signatures and supervised detections. The results are then put together and presented to the human team, who still needs to triage, understand, and investigate the situation.

Darktrace customers natively ingest raw data, apply anomaly detection and business learning, then build chains of generic anomalies which could include threat intelligence of third-party alerts. Those are then continuously investigated by our Cyber AI Analyst and put forward for human verification and actioning of next steps if they are deemed critical. This simplifies the triage process to save investigation time.

An upcoming feature for the Cyber AI Analyst allows teams to customize how it investigates each threat type, such as configuring what type of hypotheses are being run – giving teams more control. The result is a complete transformation of the triage process, where every relevant alert is investigated for the security team, those critical are prioritized for action, others await secondary investigation, or allow analysts to proactively review security gaps to stop future attacks of the same attack paths.

Last but not least, we help drive efficiencies by automating threat response with behavioral containment. That means our AI can identify and stop unusual behavior that indicates a threat while still allowing normal benign business activity to continue, all without the security team’s having to predefine every conceivable reaction.


Darktrace ActiveAI Security is a native, holistic, AI-driven platform built on over ten years of AI research. It helps security teams shift to more a productive mode, finding known and unknown attacks and transforming the SOC to drive efficiency gains. It does this across the whole incident lifecycle to lower risk, reduce time spent on active incidents, and drive return on investment.

For more information on the Darktrace Platform, download the solution brief here.

Join over 9,000 customers who have started their journey to the Darktrace ActiveAI Security Platform by selecting one of our leading cybersecurity solutions in Email Security, Network Detection and Response, Cloud Native Application Protection, and OT Security.

Discover more about our ever-strengthening platform with the upcoming changes coming to Darktrace/Email and Darktrace/OT.

Learn about the intersection of cyber and AI by downloading the State of AI Cyber Security 2024 report to discover global findings that may surprise you, insights from security leaders, and recommendations for addressing today’s top challenges that you may face, too.

Darktrace sont des experts de classe mondiale en matière de renseignement sur les menaces, de chasse aux menaces et de réponse aux incidents. Ils fournissent une assistance SOC 24 heures sur 24 et 7 jours sur 7 à des milliers de clients Darktrace dans le monde entier. Inside the SOC est exclusivement rédigé par ces experts et fournit une analyse des cyberincidents et des tendances en matière de menaces, basée sur une expérience réelle sur le terrain.
à propos de l'auteur
Mitchell Bezzina
VP, Product and Solutions Marketing
Book a 1-1 meeting with one of our experts
share this article
Aucun élément trouvé.
Aucun élément trouvé.
Couverture de base
Aucun élément trouvé.

More in this series

Aucun élément trouvé.


A l'intérieur du SOC

Lost in Translation: Darktrace Blocks Non-English Phishing Campaign Concealing Hidden Payloads

Default blog imageDefault blog image
May 2024

Email – the vector of choice for threat actors

In times of unprecedented globalization and internationalization, the enormous number of emails sent and received by organizations every day has opened the door for threat actors looking to gain unauthorized access to target networks.

Now, increasingly global organizations not only need to safeguard their email environments against phishing campaigns targeting their employees in their own language, but they also need to be able to detect malicious emails sent in foreign languages too [1].

Why are non-English language phishing emails more popular?

Many traditional email security vendors rely on pre-trained English language models which, while function adequately against malicious emails composed in English, would struggle in the face of emails composed in other languages. It should, therefore, come as no surprise that this limitation is becoming increasingly taken advantage of by attackers.  

Darktrace/Email™, on the other hand, focuses on behavioral analysis and its Self-Learning AI understands what is considered ‘normal’ for every user within an organization’s email environment, bypassing any limitations that would come from relying on language-trained models [1].

In March 2024, Darktrace observed anomalous emails on a customer’s network that were sent from email addresses belonging to an international fast-food chain. Despite this seeming legitimacy, Darktrace promptly identified them as phishing emails that contained malicious payloads, preventing a potentially disruptive network compromise.

Attack Overview and Darktrace Coverage

On March 3, 2024, Darktrace observed one of the customer’s employees receiving an email which would turn out to be the first of more than 50 malicious emails sent by attackers over the course of three days.

The Sender

Darktrace/Email immediately understood that the sender never had any previous correspondence with the organization or its employees, and therefore treated the emails with caution from the onset. Not only was Darktrace able to detect this new sender, but it also identified that the emails had been sent from a domain located in China and contained an attachment with a Chinese file name.

The phishing emails detected by Darktrace sent from a domain in China and containing an attachment with a Chinese file name.
Figure 1: The phishing emails detected by Darktrace sent from a domain in China and containing an attachment with a Chinese file name.

Darktrace further detected that the phishing emails had been sent in a synchronized fashion between March 3 and March 5. Eight unique senders were observed sending a total of 55 emails to 55 separate recipients within the customer’s email environment. The format of the addresses used to send these suspicious emails was “12345@fastflavor-shack[.]cn”*. The domain “fastflavor-shack[.]cn” is the legitimate domain of the Chinese division of an international fast-food company, and the numerical username contained five numbers, with the final three digits changing which likely represented different stores.

*(To maintain anonymity, the pseudonym “Fast Flavor Shack” and its fictitious domain, “fastflavor-shack[.]cn”, have been used in this blog to represent the actual fast-food company and the domains identified by Darktrace throughout this incident.)

The use of legitimate domains for malicious activities become commonplace in recent years, with attackers attempting to leverage the trust endpoint users have for reputable organizations or services, in order to achieve their nefarious goals. One similar example was observed when Darktrace detected an attacker attempting to carry out a phishing attack using the cloud storage service Dropbox.

As these emails were sent from a legitimate domain associated with a trusted organization and seemed to be coming from the correct connection source, they were verified by Sender Policy Framework (SPF) and were able to evade the customer’s native email security measures. Darktrace/Email; however, recognized that these emails were actually sent from a user located in Singapore, not China.

Darktrace/Email identified that the email had been sent by a user who had logged in from Singapore, despite the connection source being in China.
Figure 2: Darktrace/Email identified that the email had been sent by a user who had logged in from Singapore, despite the connection source being in China.

The Emails

Darktrace/Email autonomously analyzed the suspicious emails and identified that they were likely phishing emails containing a malicious multistage payload.

Darktrace/Email identifying the presence of a malicious phishing link and a multistage payload.
Figure 3: Darktrace/Email identifying the presence of a malicious phishing link and a multistage payload.

There has been a significant increase in multistage payload attacks in recent years, whereby a malicious email attempts to elicit recipients to follow a series of steps, such as clicking a link or scanning a QR code, before delivering a malicious payload or attempting to harvest credentials [2].

In this case, the malicious actor had embedded a suspicious link into a QR code inside a Microsoft Word document which was then attached to the email in order to direct targets to a malicious domain. While this attempt to utilize a malicious QR code may have bypassed traditional email security tools that do not scan for QR codes, Darktrace was able to identify the presence of the QR code and scan its destination, revealing it to be a suspicious domain that had never previously been seen on the network, “sssafjeuihiolsw[.]bond”.

Suspicious link embedded in QR Code, which was detected and extracted by Darktrace.
Figure 4: Suspicious link embedded in QR Code, which was detected and extracted by Darktrace.

At the time of the attack, there was no open-source intelligence (OSINT) on the domain in question as it had only been registered earlier the same day. This is significant as newly registered domains are typically much more likely to bypass gateways until traditional security tools have enough intelligence to determine that these domains are malicious, by which point a malicious actor may likely have already gained access to internal systems [4]. Despite this, Darktrace’s Self-Learning AI enabled it to recognize the activity surrounding these unusual emails as suspicious and indicative of a malicious phishing campaign, without needing to rely on existing threat intelligence.

The most commonly used sender name line for the observed phishing emails was “财务部”, meaning “finance department”, and Darktrace observed subject lines including “The document has been delivered”, “Income Tax Return Notice” and “The file has been released”, all written in Chinese.  The emails also contained an attachment named “通知文件.docx” (“Notification document”), further indicating that they had been crafted to pass for emails related to financial transaction documents.

 Darktrace/Email took autonomous mitigative action against the suspicious emails by holding the message from recipient inboxes.
Figure 5: Darktrace/Email took autonomous mitigative action against the suspicious emails by holding the message from recipient inboxes.


Although this phishing attack was ultimately thwarted by Darktrace/Email, it serves to demonstrate the potential risks of relying on solely language-trained models to detect suspicious email activity. Darktrace’s behavioral and contextual learning-based detection ensures that any deviations in expected email activity, be that a new sender, unusual locations or unexpected attachments or link, are promptly identified and actioned to disrupt the attacks at the earliest opportunity.

In this example, attackers attempted to use non-English language phishing emails containing a multistage payload hidden behind a QR code. As traditional email security measures typically rely on pre-trained language models or the signature-based detection of blacklisted senders or known malicious endpoints, this multistage approach would likely bypass native protection.  

Darktrace/Email, meanwhile, is able to autonomously scan attachments and detect QR codes within them, whilst also identifying the embedded links. This ensured that the customer’s email environment was protected against this phishing threat, preventing potential financial and reputation damage.

Credit to: Rajendra Rushanth, Cyber Analyst, Steven Haworth, Head of Threat Modelling, Email


List of Indicators of Compromise (IoCs)  

IoC – Type – Description

sssafjeuihiolsw[.]bond – Domain Name – Suspicious Link Domain

通知文件.docx – File - Payload  






Continue reading
About the author
Rajendra Rushanth
Cyber Analyst


Aucun élément trouvé.

The State of AI in Cybersecurity: The Impact of AI on Cybersecurity Solutions

Default blog imageDefault blog image
May 2024

About the AI Cybersecurity Report

Darktrace surveyed 1,800 CISOs, security leaders, administrators, and practitioners from industries around the globe. Our research was conducted to understand how the adoption of new AI-powered offensive and defensive cybersecurity technologies are being managed by organizations.

This blog continues the conversation from “The State of AI in Cybersecurity: Unveiling Global Insights from 1,800 Security Practitioners” which was an overview of the entire report. This blog will focus on one aspect of the overarching report, the impact of AI on cybersecurity solutions.

To access the full report, click here.

The effects of AI on cybersecurity solutions

Overwhelming alert volumes, high false positive rates, and endlessly innovative threat actors keep security teams scrambling. Defenders have been forced to take a reactive approach, struggling to keep pace with an ever-evolving threat landscape. It is hard to find time to address long-term objectives or revamp operational processes when you are always engaged in hand-to-hand combat.                  

The impact of AI on the threat landscape will soon make yesterday’s approaches untenable. Cybersecurity vendors are racing to capitalize on buyer interest in AI by supplying solutions that promise to meet the need. But not all AI is created equal, and not all these solutions live up to the widespread hype.  

Do security professionals believe AI will impact their security operations?

Yes! 95% of cybersecurity professionals agree that AI-powered solutions will level up their organization’s defenses.                                                                

Not only is there strong agreement about the ability of AI-powered cybersecurity solutions to improve the speed and efficiency of prevention, detection, response, and recovery, but that agreement is nearly universal, with more than 95% alignment.

This AI-powered future is about much more than generative AI. While generative AI can help accelerate the data retrieval process within threat detection, create quick incident summaries, automate low-level tasks in security operations, and simulate phishing emails and other attack tactics, most of these use cases were ranked lower in their impact to security operations by survey participants.

There are many other types of AI, which can be applied to many other use cases:

Supervised machine learning: Applied more often than any other type of AI in cybersecurity. Trained on attack patterns and historical threat intelligence to recognize known attacks.

Natural language processing (NLP): Applies computational techniques to process and understand human language. It can be used in threat intelligence, incident investigation, and summarization.

Large language models (LLMs): Used in generative AI tools, this type of AI applies deep learning models trained on massively large data sets to understand, summarize, and generate new content. The integrity of the output depends upon the quality of the data on which the AI was trained.

Unsupervised machine learning: Continuously learns from raw, unstructured data to identify deviations that represent true anomalies. With the correct models, this AI can use anomaly-based detections to identify all kinds of cyber-attacks, including entirely unknown and novel ones.

What are the areas of cybersecurity AI will impact the most?

Improving threat detection is the #1 area within cybersecurity where AI is expected to have an impact.                                                                                  

The most frequent response to this question, improving threat detection capabilities in general, was top ranked by slightly more than half (57%) of respondents. This suggests security professionals hope that AI will rapidly analyze enormous numbers of validated threats within huge volumes of fast-flowing events and signals. And that it will ultimately prove a boon to front-line security analysts. They are not wrong.

Identifying exploitable vulnerabilities (mentioned by 50% of respondents) is also important. Strengthening vulnerability management by applying AI to continuously monitor the exposed attack surface for risks and high-impact vulnerabilities can give defenders an edge. If it prevents threats from ever reaching the network, AI will have a major downstream impact on incident prevalence and breach risk.

Where will defensive AI have the greatest impact on cybersecurity?

Cloud security (61%), data security (50%), and network security (46%) are the domains where defensive AI is expected to have the greatest impact.        

Respondents selected broader domains over specific technologies. In particular, they chose the areas experiencing a renaissance. Cloud is the future for most organizations,
and the effects of cloud adoption on data and networks are intertwined. All three domains are increasingly central to business operations, impacting everything everywhere.

Responses were remarkably consistent across demographics, geographies, and organization sizes, suggesting that nearly all survey participants are thinking about this similarly—that AI will likely have far-reaching applications across the broadest fields, as well as fewer, more specific applications within narrower categories.

Going forward, it will be paramount for organizations to augment their cloud and SaaS security with AI-powered anomaly detection, as threat actors sharpen their focus on these targets.

How will security teams stop AI-powered threats?            

Most security stakeholders (71%) are confident that AI-powered security solutions are better able to block AI-powered threats than traditional tools.

There is strong agreement that AI-powered solutions will be better at stopping AI-powered threats (71% of respondents are confident in this), and there’s also agreement (66%) that AI-powered solutions will be able to do so automatically. This implies significant faith in the ability of AI to detect threats both precisely and accurately, and also orchestrate the correct response actions.

There is also a high degree of confidence in the ability of security teams to implement and operate AI-powered solutions, with only 30% of respondents expressing doubt. This bodes well for the acceptance of AI-powered solutions, with stakeholders saying they’re prepared for the shift.

On the one hand, it is positive that cybersecurity stakeholders are beginning to understand the terms of this contest—that is, that only AI can be used to fight AI. On the other hand, there are persistent misunderstandings about what AI is, what it can do, and why choosing the right type of AI is so important. Only when those popular misconceptions have become far less widespread can our industry advance its effectiveness.  

To access the full report, click here.

Continue reading
About the author
The Darktrace Community
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

Commencez votre essai gratuit
Darktrace AI protecting a business from cyber threats.