Blog

Résultats de la menace

RESPOND

Détecter et répondre à Log4Shell dans la nature

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
14
Dec 2021
14
Dec 2021
L'IA de Darktrace a détecté des attaquants exploitant les vulnérabilités de Log4Shell dans plusieurs environnements clients. Ce blog décompose deux scénarios d'attaque du monde réel et met en évidence les actions autonomes prises par l'IA.

In this blog, we’ll take a look at the Log4Shell vulnerability and provide real-world examples of how Darktrace detects and responds to attacks attempting to leverage Log4Shell in the wild.

Log4Shell is now the well-known name for CVE-2021-44228 – a severity 10 zero-day exploiting a well-known Java logging utility known as Log4j. Vulnerabilities are discovered daily, and some are more severe than others, but the fact that this open source utility is nested into nearly everything, including the Mars Ingenuity drone, makes this that much more menacing. Details and further updates about Log4Shell are still emerging at the publication date of this blog.

Typically, zero-days with the power to reach this many systems are held close to the chest and only used by nation states for high value targets or operations. This one, however, was first discovered being used against Minecraft gaming servers, shared in chat amongst gamers.

While all steps should be taken to deploy mitigations to the Log4Shell vulnerability, these can take time. As evidenced here, behavioral detection can be used to look for signs of post-exploitation activity such as scanning, coin mining, lateral movement, and other activities.

Darktrace initially detected the Log4Shell vulnerability targeting one of our customers’ Internet-facing servers, as you will see in detail in an actual anonymized threat investigation below. This was highlighted and reported using Cyber AI Analyst, unpacked here by our SOC team. Please take note that this was using pre-existing algorithms without retraining classifiers or adjusting response mechanisms in reaction to Log4Shell cyber-attacks.

How Log4Shell works

The vulnerability works by taking advantage of improper input validation by the Java Naming and Directory Interface (JNDI). A command comes in from an HTTP user-agent, encrypted HTTPS connection, or even a chat room message, and the JNDI sends that to the target system in which it gets executed. Most libraries and applications have checks and protections in place to prevent this from happening, but as seen here, they get missed at times.

Various threat actors have started to leverage the vulnerability in attacks, ranging from indiscriminate crypto-mining campaigns to targeted, more sophisticated attacks.

Real-world example 1: Log4Shell exploited on CVE ID release date

Darktrace saw this first example on December 10, the same day the CVE ID was released. We often see publicly documented vulnerabilities being weaponized within days by threat actors. This attack hit an Internet-facing device in an organization’s demilitarized zone (DMZ). Darktrace had automatically classified the server as an Internet-facing device based on its behavior.

The organization had deployed Darktrace in the on-prem network as one of many coverage areas that include cloud, email and SaaS. In this deployment, Darktrace had good visibility of the DMZ traffic. Antigena was not active in this environment, and Darktrace was in detection-mode only. Despite this fact, the client in question was able to identify and remediate this incident within hours of the initial alert. The attack was automated and had the goal of deploying a crypto-miner known as Kinsing.

In this attack, the attacker made it harder to detect the compromise by encrypting the initial command injection using HTTPS over the more common HTTP seen in the wild. Despite this method being able to bypass traditional rules and signature-based systems Darktrace was able to spot multiple unusual behaviors seconds after the initial connection.

Initial compromise details

Through peer analysis Darktrace had previously learned what this specific DMZ device and its peer group normally do in the environment. During the initial exploitation, Darktrace detected various subtle anomalies that taken together made the attack obvious.

  1. 15:45:32 Inbound HTTPS connection to DMZ server from rare Russian IP — 45.155.205[.]233;
  2. 15:45:38 DMZ server makes new outbound connection to the same rare Russian IP using two new user agents: Java user agent and curl over a port that is unusual to serve HTTP compared to previous behavior;
  3. 15:45:39 DMZ server uses an HTTP connection with another new curl user agent (‘curl/7.47.0’) to the same Russian IP. The URI contains reconnaissance information from the DMZ server.

All this activity was detected not because Darktrace had seen it before, but because it strongly deviated from the regular ‘pattern of life’ for this and similar servers in this specific organization.

This server never reached out to rare IP addresses on the Internet, using user agents it never used before, over protocol and port combinations it never uses. Every point-in-time anomaly itself may have presented slightly unusual behavior – but taken together and analyzed in the context of this particular device and environment, the detections clearly tell a bigger story of an ongoing cyber-attack.

Darktrace detected this activity with various models, for example:

  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous Connection / Callback on Web Facing Device

Further tooling and crypto-miner download

Less than 90 minutes after the initial compromise, the infected server started downloading malicious scripts and executables from a rare Ukrainian IP 80.71.158[.]12.

The following payloads were subsequently downloaded from the Ukrainian IP in order:

  • hXXp://80.71.158[.]12//lh.sh
  • hXXp://80.71.158[.]12/Expl[REDACTED].class
  • hXXp://80.71.158[.]12/kinsing
  • hXXp://80.71.158[.]12//libsystem.so
  • hXXp://80.71.158[.]12/Expl[REDACTED].class

Using no threat intelligence or detections based on static indicators of compromise (IoC) such as IPs, domain names or file hashes, Darktrace detected this next step in the attack in real time.

The DMZ server in question never communicated with this Ukrainian IP address in the past over these uncommon ports. It is also highly unusual for this device and its peers to download scripts or executable files from this type of external destination, in this fashion. Shortly after these downloads, the DMZ server started to conduct crypto-mining.

Darktrace detected this activity with various models, for example:

  • Anomalous File / Script from Rare External Location
  • Anomalous File / Internet Facing System File Download
  • Device / Internet Facing System with High Priority Alert

Surfacing the Log4Shell incident immediately

In addition to Darktrace detecting each individual step of this attack in real time, Darktrace Cyber AI Analyst also surfaced the overarching security incident, containing a cohesive narrative for the overall attack, as the most high-priority incident within a week’s worth of incidents and alerts in Darktrace. This means that this incident was the most obvious and immediate item highlighted to human security teams as it unfolded. Darktrace’s Cyber AI Analyst found each stage of this incident and asked the very questions you would expect of your human SOC analysts. From the natural language report generated by the Cyber AI Analyst, a summary of each stage of the incident followed by the vital data points human analysts need, is presented in an easy to digest format. Each tab signifies a different part of this incident outlining the actual steps taken during each investigative process.

The result of this is no sifting through low-level alerts, no need to triage point-in-time detections, no putting the detections into a bigger incident context, no need to write a report. All of this was automatically completed by the AI Analyst saving human teams valuable time.

The below incident report was automatically created and could be downloaded as a PDF in various languages.

Figure 1: Darktrace’s Cyber AI Analyst surfaces multiple stages of the attack and explains its investigation process

Real-world example 2: Responding to a different attack using Log4Shell

On December 12, another organization’s Internet-facing server was initially compromised via Log4Shell. While the details of the compromise are different – other IoCs are involved – Darktrace detected and surfaced the attack similarly to the first example.

Interestingly, this organization had Darktrace Antigena in autonomous mode on their server, meaning the AI can take autonomous actions to respond to ongoing cyber-attacks. These responses can be delivered via a variety of mechanisms, for instance, API interactions with firewalls, other security tools, or native responses issued by Darktrace.

In this attack the rare external IP 164.52.212[.]196 was used for command and control (C2) communication and malware delivery, using HTTP over port 88, which was highly unusual for this device, peer group and organization.

Antigena reacted in real time in this organization, based on the specific context of the attack, without any human in the loop. Antigena interacted with the organization’s firewall in this case to block any connections to or from the malicious IP address – in this case 164.52.212[.]196 – over port 88 for 2 hours with the option of escalating the block and duration if the attack appears to persist. This is seen in the illustration below:

Figure 2: Antigena’s response

Here comes the trick: thanks to Self-Learning AI, Darktrace knows exactly what the Internet-facing server usually does and does not do, down to each individual data point. Based on the various anomalies, Darktrace is certain that this represents a major cyber-attack.

Antigena now steps in and enforces the regular pattern of life for this server in the DMZ. This means the server can continue doing whatever it normally does – but all the highly anomalous actions are interrupted as they occur in real time, such as speaking to a rare external IP over port 88 serving HTTP to download executables.

Of course the human can change or lift the block at any given time. Antigena can also be configured to be in human confirmation mode, having the human in the loop at certain times during the day (e.g. office hours) or at all times, depending on an organization’s needs and requirements.

Conclusion

This blog illustrates further aspects of cyber-attacks leveraging the Log4Shell vulnerability. It also demonstrates how Darktrace detects and responds to zero-day attacks if Darktrace has visibility of the attacked entities.

While Log4Shell is dominating the IT and security news, similar vulnerabilities have surfaced in the past and will appear in the future. We’ve spoken about our approach to detecting and responding to similar vulnerabilities and surrounding cyber-attacks before, for instance:

As always, companies should aim for a defense-in-depth strategy combining preventative security controls with detection and response mechanisms, as well as strong patch management.

Thanks to Brianna Leddy (Darktrace’s Director of Analysis) for her insights on the above threat find.

DANS LE SOC
Darktrace sont des experts de classe mondiale en matière de renseignement sur les menaces, de chasse aux menaces et de réponse aux incidents. Ils fournissent une assistance SOC 24 heures sur 24 et 7 jours sur 7 à des milliers de clients Darktrace dans le monde entier. Inside the SOC est exclusivement rédigé par ces experts et fournit une analyse des cyberincidents et des tendances en matière de menaces, basée sur une expérience réelle sur le terrain.
AUTEUR
à propos de l'auteur
Max Heinemeyer
Directeur général des produits

Max is a cyber security expert with over a decade of experience in the field, specializing in a wide range of areas such as Penetration Testing, Red-Teaming, SIEM and SOC consulting and hunting Advanced Persistent Threat (APT) groups. At Darktrace, Max is closely involved with Darktrace’s strategic customers & prospects. He works with the R&D team at Darktrace, shaping research into new AI innovations and their various defensive and offensive applications. Max’s insights are regularly featured in international media outlets such as the BBC, Forbes and WIRED. Max holds an MSc from the University of Duisburg-Essen and a BSc from the Cooperative State University Stuttgart in International Business Information Systems.

Justin Fier
SVP, Red Team Operations

Justin is one of the US’s leading cyber intelligence experts, and holds the position of SVP, Red Team Operations at Darktrace. His insights on cyber security and artificial intelligence have been widely reported in leading media outlets, including the Wall Street Journal, CNN, The Washington Post, and VICELAND. With over 10 years’ experience in cyber defense, Justin has supported various elements in the US intelligence community, holding mission-critical security roles with Lockheed Martin, Northrop Grumman Mission Systems and Abraxas. Justin is also a highly-skilled technical specialist, and works with Darktrace’s strategic global customers on threat analysis, defensive cyber operations, protecting IoT, and machine learning.

Book a 1-1 meeting with one of our experts
share this article
CAS D'UTILISATION
Couverture de base

More in this series

Aucun élément trouvé.

Blog

A l'intérieur du SOC

A Thorn in Attackers’ Sides: How Darktrace Uncovered a CACTUS Ransomware Infection

Default blog imageDefault blog image
24
Apr 2024

What is CACTUS Ransomware?

In May 2023, Kroll Cyber Threat Intelligence Analysts identified CACTUS as a new ransomware strain that had been actively targeting large commercial organizations since March 2023 [1]. CACTUS ransomware gets its name from the filename of the ransom note, “cAcTuS.readme.txt”. Encrypted files are appended with the extension “.cts”, followed by a number which varies between attacks, e.g. “.cts1” and “.cts2”.

As the cyber threat landscape adapts to ever-present fast-paced technological change, ransomware affiliates are employing progressively sophisticated techniques to enter networks, evade detection and achieve their nefarious goals.

How does CACTUS Ransomware work?

In the case of CACTUS, threat actors have been seen gaining initial network access by exploiting Virtual Private Network (VPN) services. Once inside the network, they may conduct internal scanning using tools like SoftPerfect Network Scanner, and PowerShell commands to enumerate endpoints, identify user accounts, and ping remote endpoints. Persistence is maintained by the deployment of various remote access methods, including legitimate remote access tools like Splashtop, AnyDesk, and SuperOps RMM in order to evade detection, along with malicious tools like Cobalt Strike and Chisel. Such tools, as well as custom scripts like TotalExec, have been used to disable security software to distribute the ransomware binary. CACTUS ransomware is unique in that it adopts a double-extortion tactic, stealing data from target networks and then encrypting it on compromised systems [2].

At the end of November 2023, cybersecurity firm Arctic Wolf reported instances of CACTUS attacks exploiting vulnerabilities on the Windows version of the business analytics platform Qlik, specifically CVE-2023-41266, CVE-2023-41265, and CVE-2023-48365, to gain initial access to target networks [3]. The vulnerability tracked as CVE-2023-41266 can be exploited to generate anonymous sessions and perform HTTP requests to unauthorized endpoints, whilst CVE-2023-41265 does not require authentication and can be leveraged to elevate privileges and execute HTTP requests on the backend server that hosts the application [2].

Darktrace’s Coverage of CACTUS Ransomware

In November 2023, Darktrace observed malicious actors leveraging the aforementioned method of exploiting Qlik to gain access to the network of a customer in the US, more than a week before the vulnerability was reported by external researchers.

Here, Qlik vulnerabilities were successfully exploited, and a malicious executable (.exe) was detonated on the network, which was followed by network scanning and failed Kerberos login attempts. The attack culminated in the encryption of numerous files with extensions such as “.cts1”, and SMB writes of the ransom note “cAcTuS.readme.txt” to multiple internal devices, all of which was promptly identified by Darktrace DETECT™.

While traditional rules and signature-based detection tools may struggle to identify the malicious use of a legitimate business platform like Qlik, Darktrace’s Self-Learning AI was able to confidently identify anomalous use of the tool in a CACTUS ransomware attack by examining the rarity of the offending device’s surrounding activity and comparing it to the learned behavior of the device and its peers.

Unfortunately for the customer in this case, Darktrace RESPOND™ was not enabled in autonomous response mode during their encounter with CACTUS ransomware meaning that attackers were able to successfully escalate their attack to the point of ransomware detonation and file encryption. Had RESPOND been configured to autonomously act on any unusual activity, Darktrace could have prevented the attack from progressing, stopping the download of any harmful files, or the encryption of legitimate ones.

Cactus Ransomware Attack Overview

Holiday periods have increasingly become one of the favoured times for malicious actors to launch their attacks, as they can take advantage of the festive downtime of organizations and their security teams, and the typically more relaxed mindset of employees during this period [4].

Following this trend, in late November 2023, Darktrace began detecting anomalous connections on the network of a customer in the US, which presented multiple indicators of compromise (IoCs) and tactics, techniques and procedures (TTPs) associated with CACTUS ransomware. The threat actors in this case set their attack in motion by exploiting the Qlik vulnerabilities on one of the customer’s critical servers.

Darktrace observed the server device making beaconing connections to the endpoint “zohoservice[.]net” (IP address: 45.61.147.176) over the course of three days. This endpoint is known to host a malicious payload, namely a .zip file containing the command line connection tool PuttyLink [5].

Darktrace’s Cyber AI Analyst was able to autonomously identify over 1,000 beaconing connections taking place on the customer’s network and group them together, in this case joining the dots in an ongoing ransomware attack. AI Analyst recognized that these repeated connections to highly suspicious locations were indicative of malicious command-and-control (C2) activity.

Cyber AI Analyst Incident Log showing the offending device making over 1,000 connections to the suspicious hostname “zohoservice[.]net” over port 8383, within a specific period.
Figure 1: Cyber AI Analyst Incident Log showing the offending device making over 1,000 connections to the suspicious hostname “zohoservice[.]net” over port 8383, within a specific period.

The infected device was then observed downloading the file “putty.zip” over a HTTP connection using a PowerShell user agent. Despite being labelled as a .zip file, Darktrace’s detection capabilities were able to identify this as a masqueraded PuttyLink executable file. This activity resulted in multiple Darktrace DETECT models being triggered. These models are designed to look for suspicious file downloads from endpoints not usually visited by devices on the network, and files whose types are masqueraded, as well as the anomalous use of PowerShell. This behavior resembled previously observed activity with regards to the exploitation of Qlik Sense as an intrusion technique prior to the deployment of CACTUS ransomware [5].

The downloaded file’s URI highlighting that the file type (.exe) does not match the file's extension (.zip). Information about the observed PowerShell user agent is also featured.
Figure 2: The downloaded file’s URI highlighting that the file type (.exe) does not match the file's extension (.zip). Information about the observed PowerShell user agent is also featured.

Following the download of the masqueraded file, Darktrace observed the initial infected device engaging in unusual network scanning activity over the SMB, RDP and LDAP protocols. During this activity, the credential, “service_qlik” was observed, further indicating that Qlik was exploited by threat actors attempting to evade detection. Connections to other internal devices were made as part of this scanning activity as the attackers attempted to move laterally across the network.

Numerous failed connections from the affected server to multiple other internal devices over port 445, indicating SMB scanning activity.
Figure 3: Numerous failed connections from the affected server to multiple other internal devices over port 445, indicating SMB scanning activity.

The compromised server was then seen initiating multiple sessions over the RDP protocol to another device on the customer’s network, namely an internal DNS server. External researchers had previously observed this technique in CACTUS ransomware attacks where an RDP tunnel was established via Plink [5].

A few days later, on November 24, Darktrace identified over 20,000 failed Kerberos authentication attempts for the username “service_qlik” being made to the internal DNS server, clearly representing a brute-force login attack. There is currently a lack of open-source intelligence (OSINT) material definitively listing Kerberos login failures as part of a CACTUS ransomware attack that exploits the Qlik vulnerabilities. This highlights Darktrace’s ability to identify ongoing threats amongst unusual network activity without relying on existing threat intelligence, emphasizing its advantage over traditional security detection tools.

Kerberos login failures being carried out by the initial infected device. The destination device detected was an internal DNS server.
Figure 4: Kerberos login failures being carried out by the initial infected device. The destination device detected was an internal DNS server.

In the month following these failed Kerberos login attempts, between November 26 and December 22, Darktrace observed multiple internal devices encrypting files within the customer’s environment with the extensions “.cts1” and “.cts7”. Devices were also seen writing ransom notes with the file name “cAcTuS.readme.txt” to two additional internal devices, as well as files likely associated with Qlik, such as “QlikSense.pdf”. This activity detected by Darktrace confirmed the presence of a CACTUS ransomware infection that was spreading across the customer’s network.

The model, 'Ransom or Offensive Words Written to SMB', triggered in response to SMB file writes of the ransom note, ‘cAcTuS.readme.txt’, that was observed on the customer’s network.
Figure 5: The model, 'Ransom or Offensive Words Written to SMB', triggered in response to SMB file writes of the ransom note, ‘cAcTuS.readme.txt’, that was observed on the customer’s network.
CACTUS ransomware extensions, “.cts1” and “.cts7”, being appended to files on the customer’s network.
Figure 6: CACTUS ransomware extensions, “.cts1” and “.cts7”, being appended to files on the customer’s network.

Following this initial encryption activity, two affected devices were observed attempting to remove evidence of this activity by deleting the encrypted files.

Attackers attempting to remove evidence of their activity by deleting files with appendage “.cts1”.
Figure 7: Attackers attempting to remove evidence of their activity by deleting files with appendage “.cts1”.

Conclusion

In the face of this CACTUS ransomware attack, Darktrace’s anomaly-based approach to threat detection enabled it to quickly identify multiple stages of the cyber kill chain occurring in the customer’s environment. These stages ranged from ‘initial access’ by exploiting Qlik vulnerabilities, which Darktrace was able to detect before the method had been reported by external researchers, to ‘actions on objectives’ by encrypting files. Darktrace’s Self-Learning AI was also able to detect a previously unreported stage of the attack: multiple Kerberos brute force login attempts.

If Darktrace’s autonomous response capability, RESPOND, had been active and enabled in autonomous response mode at the time of this attack, it would have been able to take swift mitigative action to shut down such suspicious activity as soon as it was identified by DETECT, effectively containing the ransomware attack at the earliest possible stage.

Learning a network’s ‘normal’ to identify deviations from established patterns of behaviour enables Darktrace’s identify a potential compromise, even one that uses common and often legitimately used administrative tools. This allows Darktrace to stay one step ahead of the increasingly sophisticated TTPs used by ransomware actors.

Credit to Tiana Kelly, Cyber Analyst & Analyst Team Lead, Anna Gilbertson, Cyber Analyst

Appendices

References

[1] https://www.kroll.com/en/insights/publications/cyber/cactus-ransomware-prickly-new-variant-evades-detection

[2] https://www.bleepingcomputer.com/news/security/cactus-ransomware-exploiting-qlik-sense-flaws-to-breach-networks/

[3] https://explore.avertium.com/resource/new-ransomware-strains-cactus-and-3am

[4] https://www.soitron.com/cyber-attackers-abuse-holidays/

[5] https://arcticwolf.com/resources/blog/qlik-sense-exploited-in-cactus-ransomware-campaign/

Darktrace DETECT Models

Compromise / Agent Beacon (Long Period)

Anomalous Connection / PowerShell to Rare External

Device / New PowerShell User Agent

Device / Suspicious SMB Scanning Activity

Anomalous File / EXE from Rare External Location

Anomalous Connection / Unusual Internal Remote Desktop

User / Kerberos Password Brute Force

Compromise / Ransomware / Ransom or Offensive Words Written to SMB

Unusual Activity / Anomalous SMB Delete Volume

Anomalous Connection / Multiple Connections to New External TCP Port

Compromise / Slow Beaconing Activity To External Rare  

Compromise / SSL Beaconing to Rare Destination  

Anomalous Server Activity / Rare External from Server  

Compliance / Remote Management Tool On Server

Compromise / Agent Beacon (Long Period)  

Compromise / Suspicious File and C2  

Device / Internet Facing Device with High Priority Alert  

Device / Large Number of Model Breaches  

Anomalous File / Masqueraded File Transfer

Anomalous File / Internet facing System File Download  

Anomalous Server Activity / Outgoing from Server

Device / Initial Breach Chain Compromise  

Compromise / Agent Beacon (Medium Period)  

Compromise / Agent Beacon (Long Period)  

List of IoCs

IoC - Type - Description

zohoservice[.]net: 45.61.147[.]176 - Domain name: IP Address - Hosting payload over HTTP

Mozilla/5.0 (Windows NT; Windows NT 10.0; en-US) WindowsPowerShell/5.1.17763.2183 - User agent -PowerShell user agent

.cts1 - File extension - Malicious appendage

.cts7- File extension - Malicious appendage

cAcTuS.readme.txt - Filename -Ransom note

putty.zip – Filename - Initial payload: ZIP containing PuTTY Link

MITRE ATT&CK Mapping

Tactic - Technique  - SubTechnique

Web Protocols: COMMAND AND CONTROL - T1071 -T1071.001

Powershell: EXECUTION - T1059 - T1059.001

Exploitation of Remote Services: LATERAL MOVEMENT - T1210 – N/A

Vulnerability Scanning: RECONAISSANCE     - T1595 - T1595.002

Network Service Scanning: DISCOVERY - T1046 - N/A

Malware: RESOURCE DEVELOPMENT - T1588 - T1588.001

Drive-by Compromise: INITIAL ACCESS - T1189 - N/A

Remote Desktop Protocol: LATERAL MOVEMENT – 1021 -T1021.001

Brute Force: CREDENTIAL ACCESS        T – 1110 - N/A

Data Encrypted for Impact: IMPACT - T1486 - N/A

Data Destruction: IMPACT - T1485 - N/A

File Deletion: DEFENSE EVASION - T1070 - T1070.004

Continue reading
About the author
Tiana Kelly
Deputy Team Lead, London & Cyber Analyst

Blog

Aucun élément trouvé.

The State of AI in Cybersecurity: How AI will impact the cyber threat landscape in 2024

Default blog imageDefault blog image
22
Apr 2024

About the AI Cybersecurity Report

We surveyed 1,800 CISOs, security leaders, administrators, and practitioners from industries around the globe. Our research was conducted to understand how the adoption of new AI-powered offensive and defensive cybersecurity technologies are being managed by organizations.

This blog is continuing the conversation from our last blog post “The State of AI in Cybersecurity: Unveiling Global Insights from 1,800 Security Practitioners” which was an overview of the entire report. This blog will focus on one aspect of the overarching report, the impact of AI on the cyber threat landscape.

To access the full report click here.

Are organizations feeling the impact of AI-powered cyber threats?

Nearly three-quarters (74%) state AI-powered threats are now a significant issue. Almost nine in ten (89%) agree that AI-powered threats will remain a major challenge into the foreseeable future, not just for the next one to two years.

However, only a slight majority (56%) thought AI-powered threats were a separate issue from traditional/non AI-powered threats. This could be the case because there are few, if any, reliable methods to determine whether an attack is AI-powered.

Identifying exactly when and where AI is being applied may not ever be possible. However, it is possible for AI to affect every stage of the attack lifecycle. As such, defenders will likely need to focus on preparing for a world where threats are unique and are coming faster than ever before.

a hypothetical cyber attack augmented by AI at every stage

Are security stakeholders concerned about AI’s impact on cyber threats and risks?

The results from our survey showed that security practitioners are concerned that AI will impact organizations in a variety of ways. There was equal concern associated across the board – from volume and sophistication of malware to internal risks like leakage of proprietary information from employees using generative AI tools.

What this tells us is that defenders need to prepare for a greater volume of sophisticated attacks and balance this with a focus on cyber hygiene to manage internal risks.

One example of a growing internal risks is shadow AI. It takes little effort for employees to adopt publicly-available text-based generative AI systems to increase their productivity. This opens the door to “shadow AI”, which is the use of popular AI tools without organizational approval or oversight. Resulting security risks such as inadvertent exposure of sensitive information or intellectual property are an ever-growing concern.

Are organizations taking strides to reduce risks associated with adoption of AI in their application and computing environment?

71.2% of survey participants say their organization has taken steps specifically to reduce the risk of using AI within its application and computing environment.

16.3% of survey participants claim their organization has not taken these steps.

These findings are good news. Even as enterprises compete to get as much value from AI as they can, as quickly as possible, they’re tempering their eager embrace of new tools with sensible caution.

Still, responses varied across roles. Security analysts, operators, administrators, and incident responders are less likely to have said their organizations had taken AI risk mitigation steps than respondents in other roles. In fact, 79% of executives said steps had been taken, and only 54% of respondents in hands-on roles agreed. It seems that leaders believe their organizations are taking the needed steps, but practitioners are seeing a gap.

Do security professionals feel confident in their preparedness for the next generation of threats?

A majority of respondents (six out of every ten) believe their organizations are inadequately prepared to face the next generation of AI-powered threats.

The survey findings reveal contrasting perceptions of organizational preparedness for cybersecurity threats across different regions and job roles. Security administrators, due to their hands-on experience, express the highest level of skepticism, with 72% feeling their organizations are inadequately prepared. Notably, respondents in mid-sized organizations feel the least prepared, while those in the largest companies feel the most prepared.

Regionally, participants in Asia-Pacific are most likely to believe their organizations are unprepared, while those in Latin America feel the most prepared. This aligns with the observation that Asia-Pacific has been the most impacted region by cybersecurity threats in recent years, according to the IBM X-Force Threat Intelligence Index.

The optimism among Latin American respondents could be attributed to lower threat volumes experienced in the region, but it's cautioned that this could change suddenly (1).

What are biggest barriers to defending against AI-powered threats?

The top-ranked inhibitors center on knowledge and personnel. However, issues are alluded to almost equally across the board including concerns around budget, tool integration, lack of attention to AI-powered threats, and poor cyber hygiene.

The cybersecurity industry is facing a significant shortage of skilled professionals, with a global deficit of approximately 4 million experts (2). As organizations struggle to manage their security tools and alerts, the challenge intensifies with the increasing adoption of AI by attackers. This shift has altered the demands on security teams, requiring practitioners to possess broad and deep knowledge across rapidly evolving solution stacks.

Educating end users about AI-driven defenses becomes paramount as organizations grapple with the shortage of professionals proficient in managing AI-powered security tools. Operationalizing machine learning models for effectiveness and accuracy emerges as a crucial skill set in high demand. However, our survey highlights a concerning lack of understanding among cybersecurity professionals regarding AI-driven threats and the use of AI-driven countermeasures indicating a gap in keeping pace with evolving attacker tactics.

The integration of security solutions remains a notable problem, hindering effective defense strategies. While budget constraints are not a primary inhibitor, organizations must prioritize addressing these challenges to bolster their cybersecurity posture. It's imperative for stakeholders to recognize the importance of investing in skilled professionals and integrated security solutions to mitigate emerging threats effectively.

To access the full report click here.

References

1. IBM, X-Force Threat Intelligence Index 2024, Available at: https://www.ibm.com/downloads/cas/L0GKXDWJ

2. ISC2, Cybersecurity Workforce Study 2023, Available at: https://media.isc2.org/-/media/Project/ISC2/Main/Media/ documents/research/ISC2_Cybersecurity_Workforce_Study_2023.pdf?rev=28b46de71ce24e6ab7705f6e3da8637e

Continue reading
About the author
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

Commencez votre essai gratuit
Darktrace AI protecting a business from cyber threats.