Blog

Email

Looking Beyond Secure Email Gateways with the Latest Innovations to Darktrace/Email

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
07
Apr 2024
07
Apr 2024
In 2024, email security challenges have evolved far beyond inbound attacks, as cyber attackers increasingly leverage AI and employ multi-vector techniques that penetrate every facet of organizational communication. Read how the largest ever update to Darktrace/Email introduces new innovations designed to address the nature of modern email threats.

Organizations Should Demand More from their Email Security

In response to a more intricate threat landscape, organizations should view email security as a critical component of their defense-in-depth strategy, rather than defending the inbox alone with a traditional Secure Email Gateway (SEG). Organizations need more than a traditional gateway – that doubles, instead of replaces, the capabilities provided by native security vendor – and require an equally granular degree of analysis across all messaging, including inbound, outbound, and lateral mail, plus Teams messages.  

Darktrace/Email is the industry’s most advanced cloud email security, powered by Self-Learning AI. It combines AI techniques to exceed the accuracy and efficiency of leading security solutions, and is the only security built to elevate, not duplicate, native email security.  

With its largest update ever, Darktrace/Email introduces the following innovations, finally allowing security teams to look beyond secure email gateways with autonomous AI:

  • AI-augmented data loss prevention to stop the entire spectrum of outbound mail threats
  • an easy way to deploy DMARC quickly with AI
  • major enhancements to streamline SOC workflows and increase the detection of sophisticated phishing links
  • expansion of Darktrace’s leading AI prevention to lateral mail, account compromise and Microsoft Teams

What’s New with Darktrace/Email  

Data Loss Prevention  

Block the entire spectrum of outbound mail threats with advanced data loss prevention that builds on tags in native email to stop unknown, accidental, and malicious data loss

Darktrace understands normal at individual user, group and organization level with a proven AI that detects abnormal user behavior and dynamic content changes. Using this understanding, Darktrace/Email actions outbound emails to stop unknown, accidental and malicious data loss.  

Traditional DLP solutions only take into account classified data, which relies on the manual input of labelling each data piece, or creating rules to catch pattern matches that try to stop data of certain types leaving the organization. But in today’s world of constantly changing data, regular expression and fingerprinting detection are no longer enough.

  • Human error – Because it understands normal for every user, Darktrace/Email can recognize cases of misdirected emails. Even if the data is correctly labelled or insensitive, Darktrace recognizes when the context in which it is being sent could be a case of data loss and warns the user.  
  • Unclassified data – Whereas traditional DLP solutions can only take action on classified data, Darktrace analyzes the range of data that is either pending labels or can’t be labeled with typical capabilities due to its understanding of the content and context of every email.  
  • Insider threat – If a malicious actor has compromised an account, data exfiltration may still be attempted on encrypted, intellectual property, or other forms of unlabelled data to avoid detection. Darktrace analyses user behaviour to catch cases of unusual data exfiltration from individual accounts.

And classification efforts already in place aren’t wasted – Darktrace/Email extends Microsoft Purview policies and sensitivity labels to avoid duplicate workflows for the security team, combining the best of both approaches to ensure organizations maintain control and visibility over their data.

End User and Security Workflows

Achieve more than 60% improvement in the quality of end-user phishing reports and detection of sophisticated malicious weblinks1

Darktrace/Email improves end-user reporting from the ground up to save security team resource. Employees will always be on the front line of email security – while other solutions assume that end-user reporting is automatically of poor quality, Darktrace prioritizes improving users’ security awareness to increase the quality of end-user reporting from day one.  

Users are empowered to assess and report suspicious activity with contextual banners and Cyber AI Analyst generated narratives for potentially suspicious emails, resulting in 60% fewer benign emails reported.  

Out of the higher-quality emails that end up being reported, the next step is to reduce the amount of emails that reach the SOC. Darktrace/Email’s Mailbox Security Assistant automates their triage with secondary analysis combining additional behavioral signals – using x20 more metrics than previously – with advanced link analysis to detect 70% more sophisticated malicious phishing links.2 This directly alleviates the burden of manual triage for security analysts.

For the emails that are received by the SOC, Darktrace/Email uses automation to reduce time spent investigating per incident. With live inbox view, security teams gain access to a centralized platform that combines intuitive search capabilities, Cyber AI Analyst reports, and mobile application access. Analysts can take remediation actions from within Darktrace/Email, eliminating console hopping and accelerating incident response.

Darktrace takes a user-focused and business-centric approach to email security, in contrast to the attack-centric rules and signatures approach of secure email gateways

Microsoft Teams

Detect threats within your Teams environment such as account compromise, phishing, malware and data loss

Around 83% of Fortune 500 companies rely on Microsoft Office products and services, particularly Teams and SharePoint.3

Darktrace now leverages the same behavioral AI techniques for Microsoft customers across 365 and Teams, allowing organizations to detect threats and signals of account compromise within their Teams environment including social engineering, malware and data loss.  

The primary use case for Microsoft Teams protection is as a potential entry vector. While messaging has traditionally been internal only, as organizations open up it is becoming an entry vector which needs to be treated with the same level of caution as email. That’s why we’re bringing our proven AI approach to Microsoft Teams, that understands the user behind the message.  

Anomalous messaging behavior is also a highly relevant indicator of whether a user has been compromised. Unlike other solutions that analyze Microsoft Teams content which focus on payloads, Darktrace goes beyond basic link and sandbox analysis and looks at actual user behavior from both a content and context perspective. This linguistic understanding isn’t bound by the requirement to match a signature to a malicious payload, rather it looks at the context in which the message has been delivered. From this analysis, Darktrace can spot the early symptoms of account compromise such as early-stage social engineering before a payload is delivered.

Lateral Mail Analysis

Detect and respond to internal mailflow with multi-layered AI to prevent account takeover, lateral phishing and data leaks

The industry’s most robust account takeover protection now prevents lateral mail account compromise. Darktrace has always looked at internal mail to inform inbound and outbound decisions, but will now elevate suspicious lateral mail behaviour using the same AI techniques for inbound, outbound and Teams analysis.

Darktrace integrates signals from across the entire mailflow and communication patterns to determine symptoms of account compromise, now including lateral mailflow

Unlike other solutions which only analyze payloads, Darktrace analyzes a whole range of signals to catch lateral movement before a payload is delivered. Contributing yet another layer to the AI behavioral profile for each user, security teams can now use signals from lateral mail to spot the early symptoms of account takeover and take autonomous actions to prevent further compromise.

DMARC

Gain in-depth visibility and control of 3rd parties using your domain with an industry-first AI-assisted DMARC

Darktrace has created the easiest path to brand protection and compliance with the new Darktrace/DMARC. This new capability continuously stops spoofing and phishing from the enterprise domain, while automatically enhancing email security and reducing the attack surface.

Darktrace/DMARC helps to upskill businesses by providing step by step guidance and automated record suggestions provide a clear, efficient road to enforcement. It allows organizations to quickly achieve compliance with requirements from Google, Yahoo, and others, to ensure that their emails are reaching mailboxes.  

Meanwhile, Darktrace/DMARC helps to reduce the overall attack surface by providing visibility over shadow-IT and third-party vendors sending on behalf of an organization’s brand, while informing recipients when emails from their domains are sent from un-authenticated DMARC source.

Darktrace/DMARC integrates with the wider Darktrace product platform, sharing insights to help further secure your business across Email Attack Path and Attack Surface management.

Conclusion

To learn more about the new innovations to Darktrace/Email download the solution brief here.

All of the new updates to Darktrace/Email sit within the new Darktrace ActiveAI Security Platform, creating a feedback loop between email security and the rest of the digital estate for better protection. Click to read more about the Darktrace ActiveAI Security Platform or to hear about the latest innovations to Darktrace/OT, the most comprehensive prevention, detection, and response solution purpose built for critical infrastructures.  

Learn about the intersection of cyber and AI by downloading the State of AI Cyber Security 2024 report to discover global findings that may surprise you, insights from security leaders, and recommendations for addressing today’s top challenges that you may face, too.

References

[1] Internal Darktrace Research

[2] Internal Darktrace Research

[3] Essential Microsoft Office Statistics in 2024

DANS LE SOC
Darktrace sont des experts de classe mondiale en matière de renseignement sur les menaces, de chasse aux menaces et de réponse aux incidents. Ils fournissent une assistance SOC 24 heures sur 24 et 7 jours sur 7 à des milliers de clients Darktrace dans le monde entier. Inside the SOC est exclusivement rédigé par ces experts et fournit une analyse des cyberincidents et des tendances en matière de menaces, basée sur une expérience réelle sur le terrain.
AUTEUR
à propos de l'auteur
Carlos Gray
Product Manager

Carlos Gonzalez Gray is a Product Marketing Manager at Darktrace. Based in the Madrid Office, Carlos engages with the global product team to ensure each product supports the company’s overall strategy and goals throughout their entire lifecycle. Previous to his position in the product team, Carlos worked as a Cyber Technology Specialist where he specialized in the OT sector protecting critical infrastructure.  His background as a consultant in Spain to IBEX 35 companies led him to become well versed in matters of compliance, auditing and data privacy as well. Carlos holds an Honors BA in Political Science and a Masters in Cybersecurity from IE University.

Book a 1-1 meeting with one of our experts
share this article
CAS D'UTILISATION
Aucun élément trouvé.
PLEINS FEUX SUR LES PRODUITS
Aucun élément trouvé.
Couverture de base

More in this series

Aucun élément trouvé.

Blog

A l'intérieur du SOC

Lost in Translation: Darktrace Blocks Non-English Phishing Campaign Concealing Hidden Payloads

Default blog imageDefault blog image
15
May 2024

Email – the vector of choice for threat actors

In times of unprecedented globalization and internationalization, the enormous number of emails sent and received by organizations every day has opened the door for threat actors looking to gain unauthorized access to target networks.

Now, increasingly global organizations not only need to safeguard their email environments against phishing campaigns targeting their employees in their own language, but they also need to be able to detect malicious emails sent in foreign languages too [1].

Why are non-English language phishing emails more popular?

Many traditional email security vendors rely on pre-trained English language models which, while function adequately against malicious emails composed in English, would struggle in the face of emails composed in other languages. It should, therefore, come as no surprise that this limitation is becoming increasingly taken advantage of by attackers.  

Darktrace/Email™, on the other hand, focuses on behavioral analysis and its Self-Learning AI understands what is considered ‘normal’ for every user within an organization’s email environment, bypassing any limitations that would come from relying on language-trained models [1].

In March 2024, Darktrace observed anomalous emails on a customer’s network that were sent from email addresses belonging to an international fast-food chain. Despite this seeming legitimacy, Darktrace promptly identified them as phishing emails that contained malicious payloads, preventing a potentially disruptive network compromise.

Attack Overview and Darktrace Coverage

On March 3, 2024, Darktrace observed one of the customer’s employees receiving an email which would turn out to be the first of more than 50 malicious emails sent by attackers over the course of three days.

The Sender

Darktrace/Email immediately understood that the sender never had any previous correspondence with the organization or its employees, and therefore treated the emails with caution from the onset. Not only was Darktrace able to detect this new sender, but it also identified that the emails had been sent from a domain located in China and contained an attachment with a Chinese file name.

The phishing emails detected by Darktrace sent from a domain in China and containing an attachment with a Chinese file name.
Figure 1: The phishing emails detected by Darktrace sent from a domain in China and containing an attachment with a Chinese file name.

Darktrace further detected that the phishing emails had been sent in a synchronized fashion between March 3 and March 5. Eight unique senders were observed sending a total of 55 emails to 55 separate recipients within the customer’s email environment. The format of the addresses used to send these suspicious emails was “12345@fastflavor-shack[.]cn”*. The domain “fastflavor-shack[.]cn” is the legitimate domain of the Chinese division of an international fast-food company, and the numerical username contained five numbers, with the final three digits changing which likely represented different stores.

*(To maintain anonymity, the pseudonym “Fast Flavor Shack” and its fictitious domain, “fastflavor-shack[.]cn”, have been used in this blog to represent the actual fast-food company and the domains identified by Darktrace throughout this incident.)

The use of legitimate domains for malicious activities become commonplace in recent years, with attackers attempting to leverage the trust endpoint users have for reputable organizations or services, in order to achieve their nefarious goals. One similar example was observed when Darktrace detected an attacker attempting to carry out a phishing attack using the cloud storage service Dropbox.

As these emails were sent from a legitimate domain associated with a trusted organization and seemed to be coming from the correct connection source, they were verified by Sender Policy Framework (SPF) and were able to evade the customer’s native email security measures. Darktrace/Email; however, recognized that these emails were actually sent from a user located in Singapore, not China.

Darktrace/Email identified that the email had been sent by a user who had logged in from Singapore, despite the connection source being in China.
Figure 2: Darktrace/Email identified that the email had been sent by a user who had logged in from Singapore, despite the connection source being in China.

The Emails

Darktrace/Email autonomously analyzed the suspicious emails and identified that they were likely phishing emails containing a malicious multistage payload.

Darktrace/Email identifying the presence of a malicious phishing link and a multistage payload.
Figure 3: Darktrace/Email identifying the presence of a malicious phishing link and a multistage payload.

There has been a significant increase in multistage payload attacks in recent years, whereby a malicious email attempts to elicit recipients to follow a series of steps, such as clicking a link or scanning a QR code, before delivering a malicious payload or attempting to harvest credentials [2].

In this case, the malicious actor had embedded a suspicious link into a QR code inside a Microsoft Word document which was then attached to the email in order to direct targets to a malicious domain. While this attempt to utilize a malicious QR code may have bypassed traditional email security tools that do not scan for QR codes, Darktrace was able to identify the presence of the QR code and scan its destination, revealing it to be a suspicious domain that had never previously been seen on the network, “sssafjeuihiolsw[.]bond”.

Suspicious link embedded in QR Code, which was detected and extracted by Darktrace.
Figure 4: Suspicious link embedded in QR Code, which was detected and extracted by Darktrace.

At the time of the attack, there was no open-source intelligence (OSINT) on the domain in question as it had only been registered earlier the same day. This is significant as newly registered domains are typically much more likely to bypass gateways until traditional security tools have enough intelligence to determine that these domains are malicious, by which point a malicious actor may likely have already gained access to internal systems [4]. Despite this, Darktrace’s Self-Learning AI enabled it to recognize the activity surrounding these unusual emails as suspicious and indicative of a malicious phishing campaign, without needing to rely on existing threat intelligence.

The most commonly used sender name line for the observed phishing emails was “财务部”, meaning “finance department”, and Darktrace observed subject lines including “The document has been delivered”, “Income Tax Return Notice” and “The file has been released”, all written in Chinese.  The emails also contained an attachment named “通知文件.docx” (“Notification document”), further indicating that they had been crafted to pass for emails related to financial transaction documents.

 Darktrace/Email took autonomous mitigative action against the suspicious emails by holding the message from recipient inboxes.
Figure 5: Darktrace/Email took autonomous mitigative action against the suspicious emails by holding the message from recipient inboxes.

Conclusion

Although this phishing attack was ultimately thwarted by Darktrace/Email, it serves to demonstrate the potential risks of relying on solely language-trained models to detect suspicious email activity. Darktrace’s behavioral and contextual learning-based detection ensures that any deviations in expected email activity, be that a new sender, unusual locations or unexpected attachments or link, are promptly identified and actioned to disrupt the attacks at the earliest opportunity.

In this example, attackers attempted to use non-English language phishing emails containing a multistage payload hidden behind a QR code. As traditional email security measures typically rely on pre-trained language models or the signature-based detection of blacklisted senders or known malicious endpoints, this multistage approach would likely bypass native protection.  

Darktrace/Email, meanwhile, is able to autonomously scan attachments and detect QR codes within them, whilst also identifying the embedded links. This ensured that the customer’s email environment was protected against this phishing threat, preventing potential financial and reputation damage.

Credit to: Rajendra Rushanth, Cyber Analyst, Steven Haworth, Head of Threat Modelling, Email

Appendices  

List of Indicators of Compromise (IoCs)  

IoC – Type – Description

sssafjeuihiolsw[.]bond – Domain Name – Suspicious Link Domain

通知文件.docx – File - Payload  

References

[1] https://darktrace.com/blog/stopping-phishing-attacks-in-enter-language  

[2] https://darktrace.com/blog/attacks-are-getting-personal

[3] https://darktrace.com/blog/phishing-with-qr-codes-how-darktrace-detected-and-blocked-the-bait

[4] https://darktrace.com/blog/the-domain-game-how-email-attackers-are-buying-their-way-into-inboxes

Continue reading
About the author
Rajendra Rushanth
Cyber Analyst

Blog

Aucun élément trouvé.

The State of AI in Cybersecurity: The Impact of AI on Cybersecurity Solutions

Default blog imageDefault blog image
13
May 2024

About the AI Cybersecurity Report

Darktrace surveyed 1,800 CISOs, security leaders, administrators, and practitioners from industries around the globe. Our research was conducted to understand how the adoption of new AI-powered offensive and defensive cybersecurity technologies are being managed by organizations.

This blog continues the conversation from “The State of AI in Cybersecurity: Unveiling Global Insights from 1,800 Security Practitioners” which was an overview of the entire report. This blog will focus on one aspect of the overarching report, the impact of AI on cybersecurity solutions.

To access the full report, click here.

The effects of AI on cybersecurity solutions

Overwhelming alert volumes, high false positive rates, and endlessly innovative threat actors keep security teams scrambling. Defenders have been forced to take a reactive approach, struggling to keep pace with an ever-evolving threat landscape. It is hard to find time to address long-term objectives or revamp operational processes when you are always engaged in hand-to-hand combat.                  

The impact of AI on the threat landscape will soon make yesterday’s approaches untenable. Cybersecurity vendors are racing to capitalize on buyer interest in AI by supplying solutions that promise to meet the need. But not all AI is created equal, and not all these solutions live up to the widespread hype.  

Do security professionals believe AI will impact their security operations?

Yes! 95% of cybersecurity professionals agree that AI-powered solutions will level up their organization’s defenses.                                                                

Not only is there strong agreement about the ability of AI-powered cybersecurity solutions to improve the speed and efficiency of prevention, detection, response, and recovery, but that agreement is nearly universal, with more than 95% alignment.

This AI-powered future is about much more than generative AI. While generative AI can help accelerate the data retrieval process within threat detection, create quick incident summaries, automate low-level tasks in security operations, and simulate phishing emails and other attack tactics, most of these use cases were ranked lower in their impact to security operations by survey participants.

There are many other types of AI, which can be applied to many other use cases:

Supervised machine learning: Applied more often than any other type of AI in cybersecurity. Trained on attack patterns and historical threat intelligence to recognize known attacks.

Natural language processing (NLP): Applies computational techniques to process and understand human language. It can be used in threat intelligence, incident investigation, and summarization.

Large language models (LLMs): Used in generative AI tools, this type of AI applies deep learning models trained on massively large data sets to understand, summarize, and generate new content. The integrity of the output depends upon the quality of the data on which the AI was trained.

Unsupervised machine learning: Continuously learns from raw, unstructured data to identify deviations that represent true anomalies. With the correct models, this AI can use anomaly-based detections to identify all kinds of cyber-attacks, including entirely unknown and novel ones.

What are the areas of cybersecurity AI will impact the most?

Improving threat detection is the #1 area within cybersecurity where AI is expected to have an impact.                                                                                  

The most frequent response to this question, improving threat detection capabilities in general, was top ranked by slightly more than half (57%) of respondents. This suggests security professionals hope that AI will rapidly analyze enormous numbers of validated threats within huge volumes of fast-flowing events and signals. And that it will ultimately prove a boon to front-line security analysts. They are not wrong.

Identifying exploitable vulnerabilities (mentioned by 50% of respondents) is also important. Strengthening vulnerability management by applying AI to continuously monitor the exposed attack surface for risks and high-impact vulnerabilities can give defenders an edge. If it prevents threats from ever reaching the network, AI will have a major downstream impact on incident prevalence and breach risk.

Where will defensive AI have the greatest impact on cybersecurity?

Cloud security (61%), data security (50%), and network security (46%) are the domains where defensive AI is expected to have the greatest impact.        

Respondents selected broader domains over specific technologies. In particular, they chose the areas experiencing a renaissance. Cloud is the future for most organizations,
and the effects of cloud adoption on data and networks are intertwined. All three domains are increasingly central to business operations, impacting everything everywhere.

Responses were remarkably consistent across demographics, geographies, and organization sizes, suggesting that nearly all survey participants are thinking about this similarly—that AI will likely have far-reaching applications across the broadest fields, as well as fewer, more specific applications within narrower categories.

Going forward, it will be paramount for organizations to augment their cloud and SaaS security with AI-powered anomaly detection, as threat actors sharpen their focus on these targets.

How will security teams stop AI-powered threats?            

Most security stakeholders (71%) are confident that AI-powered security solutions are better able to block AI-powered threats than traditional tools.

There is strong agreement that AI-powered solutions will be better at stopping AI-powered threats (71% of respondents are confident in this), and there’s also agreement (66%) that AI-powered solutions will be able to do so automatically. This implies significant faith in the ability of AI to detect threats both precisely and accurately, and also orchestrate the correct response actions.

There is also a high degree of confidence in the ability of security teams to implement and operate AI-powered solutions, with only 30% of respondents expressing doubt. This bodes well for the acceptance of AI-powered solutions, with stakeholders saying they’re prepared for the shift.

On the one hand, it is positive that cybersecurity stakeholders are beginning to understand the terms of this contest—that is, that only AI can be used to fight AI. On the other hand, there are persistent misunderstandings about what AI is, what it can do, and why choosing the right type of AI is so important. Only when those popular misconceptions have become far less widespread can our industry advance its effectiveness.  

To access the full report, click here.

Continue reading
About the author
The Darktrace Community
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

Commencez votre essai gratuit
Darktrace AI protecting a business from cyber threats.