Blog

A l'intérieur du SOC

Walking through the front door: Compromises of Internet-facing systems

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
04
Apr 2022
04
Apr 2022
In 2021 Internet-facing systems were some of the most heavily targeted for compromise. This blog explores four of the top zero-day vulnerabilities from the year and highlights how Darktrace was able to detect them.

By virtue of their exposure, Internet-facing systems (i.e., systems which have ports open/exposed to the wider Internet) are particularly susceptible to compromise. Attackers typically compromise Internet-facing systems by exploiting zero-day vulnerabilities in applications they run. During 2021, critical zero-day vulnerabilities in the following applications were publicly disclosed:

Internet-facing systems running these applications were consequently heavily targeted by attackers. In this post, we will provide examples of compromises of these systems observed by Darktrace’s SOC team in 2021. As will become clear, successful exploitation of weaknesses in Internet-facing systems inevitably results in such systems doing things which they do not normally do. Rather than focusing on identifying attempts to exploit these weaknesses, Darktrace focuses on identifying the unusual behaviors which inevitably ensue. The purpose of this post is to highlight the effectiveness of this approach.

Exchange server compromise

In January, researchers from the cyber security company DEVCORE reported a series of critical vulnerabilities in Microsoft Exchange which they dubbed ‘ProxyLogon’.[1] ProxyLogon consists of a server-side request forgery (SSRF) vulnerability (CVE-2021-26855) and a remote code execution (RCE) vulnerability (CVE-2021-27065). Attackers were observed exploiting these vulnerabilities in the wild from as early as January 6.[2] In April, DEVCORE researchers reported another series of critical vulnerabilities in Microsoft Exchange which they dubbed ‘ProxyShell’.[3] ProxyShell consists of a pre-authentication path confusion vulnerability (CVE-2021-34473), a privilege elevation vulnerability (CVE-2021-34523), and a post-authentication RCE vulnerability (CVE-2021-31207). Attackers were first observed exploiting these vulnerabilities in the wild in August.[4] In many cases, attackers exploited the ProxyShell and ProxyLogon vulnerabilities in order to create web shells on the targeted Exchange servers. The presence of these web shells provided attackers with the means to remotely execute commands on the compromised servers.

In early August 2021, by exploiting the ProxyShell vulnerabilities, an attacker gained the rights to remotely execute PowerShell commands on an Internet-facing Exchange server within the network of a US-based transportation company. The attacker subsequently executed a number of PowerShell commands on the server. One of these commands caused the server to make a 28-minute-long SSL connection to a highly unusual external endpoint. Within a couple of hours, the attacker managed to strengthen their foothold within the network by installing AnyDesk and CobaltStrike on several internal devices. In mid-August, the attacker got the devices on which they had installed Cobalt Strike to conduct network reconnaissance and to transfer terabytes of data to the cloud storage service, MEGA. At the end of August, the attacker got the devices on which they had installed AnyDesk to execute Conti ransomware and to spread executable files and script files to further internal devices.

In this example, the attacker’s exploitation of ProxyShell immediately resulted in the Exchange Server making a long SSL connection to an unusual external endpoint. This connection caused the model Device / Long Agent Connection to New Endpoint to breach. The subsequent reconnaissance, lateral movement, C2, external data transfer, and encryption behavior brought about by the attacker were also picked up by Darktrace’s models.

A non-exhaustive list of the models that breached as a result of the behavior brought about by the attacker:

  • Device / Long Agent Connection to New Endpoint
  • Device / ICMP Address Scan
  • Anomalous Connection / SMB Enumeration
  • Anomalous Server Activity / Outgoing from Server
  • Compromise / Beacon to Young Endpoint
  • Anomalous Server Activity / Rare External from Server
  • Compromise / Fast Beaconing to DGA
  • Compromise / SSL or HTTP Beacon
  • Compromise / Sustained SSL or HTTP Increase
  • Compromise / Beacon for 4 Days
  • Anomalous Connection / Multiple HTTP POSTs to Rare Hostname
  • Unusual Activity / Enhanced Unusual External Data Transfer
  • Anomalous Connection / Data Sent to Rare Domain
  • Anomalous Connection / Uncommon 1 GiB Outbound
  • Compliance / SMB Drive Write
  • Anomalous File / Internal / Additional Extension Appended to SMB File
  • Anomalous Connection / Suspicious Read Write Ratio
  • Anomalous Connection / Suspicious Read Write Ratio and Unusual SMB
  • Anomalous Connection / Sustained MIME Type Conversion
  • Unusual Activity / Anomalous SMB Move & Write
  • Unusual Activity / Unusual Internal Data Volume as Client or Server
  • Device / Suspicious File Writes to Multiple Hidden SMB Shares
  • Compromise / Ransomware / Suspicious SMB Activity
  • Anomalous File / Internal / Unusual SMB Script Write
  • Anomalous File / Internal / Masqueraded Executable SMB Write
  • Device / SMB Lateral Movement
  • Device / Multiple Lateral Movement Model Breaches

Confluence server compromise

Atlassian’s Confluence is an application which provides the means for building collaborative, virtual workspaces. In the era of remote working, the value of such an application is undeniable. The public disclosure of a critical remote code execution (RCE) vulnerability (CVE-2021-26084) in Confluence in August 2021 thus provided a prime opportunity for attackers to cause havoc. The vulnerability, which arises from the use of Object-Graph Navigation Language (OGNL) in Confluence’s tag system, provides attackers with the means to remotely execute code on vulnerable Confluence server by sending a crafted HTTP request containing a malicious parameter.[5] Attackers were first observed exploiting this vulnerability towards the end of August, and in the majority of cases, attackers exploited the vulnerability in order to install crypto-mining tools onto vulnerable servers.[6]

At the beginning of September 2021, an attacker was observed exploiting CVE-2021-26084 in order to install the crypto-mining tool, XMRig, as well as a shell script, onto an Internet-facing Confluence server within the network of an EMEA-based television and broadcasting company. Within a couple of hours, the attacker installed files associated with the crypto-mining malware, Kinsing, onto the server. The Kinsing-infected server then immediately began to communicate over HTTP with the attacker’s C2 infrastructure. Around the time of this activity, the server was observed using the MinerGate crypto-mining protocol, indicating that the server had begun to mine cryptocurrency.

In this example, the attacker’s exploitation of CVE-2021-26084 immediately resulted in the Confluence server making an HTTP GET request with an unusual user-agent string (one associated with curl in this case) to a rare external IP. This behavior caused the models Device / New User Agent, Anomalous Connection / New User Agent to IP Without Hostname, and Anomalous File / Script from Rare Location to breach. The subsequent file downloads, C2 traffic and crypto-mining activity also resulted in several models breaching.

A non-exhaustive list of the models which breached as a result of the unusual behavior brought about by the attacker:

  • Device / New User Agent
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous File / Script from Rare Location
  • Anomalous File / EXE from Rare External Location
  • Anomalous File / Internet Facing System File Download
  • Device / Initial Breach Chain Compromise
  • Anomalous Connection / Posting HTTP to IP Without Hostname
  • Compliance / Crypto Currency Mining Activity
  • Compromise / High Priority Crypto Currency Mining
  • Device / Internet Facing Device with High Priority Alert

GitLab server compromise

GitLab is an application providing services ranging from project planning to source code management. Back in April 2021, a critical RCE vulnerability (CVE-2021-22205) in GitLab was publicly reported by a cyber security researcher via the bug bounty platform, HackerOne.[7] The vulnerability, which arises from GitLab’s use of ExifTool for removing metadata from image files, [8] enables attackers to remotely execute code on vulnerable GitLab servers by uploading specially crafted image files.[9] Attackers were first observed exploiting CVE-2021-22205 in the wild in June/July.[10] A surge in exploitations of the vulnerability was observed at the end of October, with attackers exploiting the flaw in order to assemble botnets.[11] Darktrace observed a significant number of cases in which attackers exploited the vulnerability in order to install crypto-mining tools onto vulnerable GitLab servers.

On October 29, an attacker successfully exploited CVE-2021-22205 on an Internet-facing GitLab server within the network of a UK-based education provider. The organization was trialing Darktrace when this incident occurred. The attacker installed several executable files and shell scripts onto the server by exploiting the vulnerability. The attacker communicated with the compromised server (using unusual ports) for several days, before making the server transfer large volumes of data externally and download the crypto-mining tool, XMRig, as well as the botnet malware, Mirai. The server was consequently observed making connections to the crypto-mining pool, C3Pool.

In this example, the attacker’s exploitation of the vulnerability in GitLab immediately resulted in the server making an HTTP GET request with an unusual user-agent string (one associated with Wget in this case) to a rare external IP. The models Anomalous Connection / New User Agent to IP Without Hostname and Anomalous File / EXE from Rare External Location breached as a result of this behavior. The attacker’s subsequent activity on the server over the next few days resulted in frequent model breaches.

A non-exhaustive list of the models which breached as a result of the attacker’s activity on the server:

  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous File / EXE from Rare External Location
  • Anomalous File / Multiple EXE from Rare External Locations
  • Anomalous File / Internet Facing Device with High Priority Alert
  • Anomalous File / Script from Rare Location
  • Anomalous Connection / Application Protocol on Uncommon Port
  • Anomalous Connection / Anomalous SSL without SNI to New External
  • Device / Initial Breach Chain Compromise
  • Unusual Activity / Unusual External Data to New IPs
  • Anomalous Server Activity / Outgoing from Server
  • Device / Large Number of Model Breaches from Critical Network Device
  • Anomalous Connection / Data Sent to Rare Domain
  • Compromise / Suspicious File and C2
  • Unusual Activity / Enhanced Unusual External Data Transfer
  • Compliance / Crypto Currency Mining Activity
  • Compliance / High Priority Crypto Currency Mining
  • Anomalous File / Zip or Gzip from Rare External Location
  • Compromise / Monero Mining
  • Device / Internet Facing Device with High Priority Alert
  • Anomalous Server Activity / Rare External from Server
  • Compromise / Slow Beaconing Activity To External Rare
  • Compromise / Beaconing Activity To External Rare
  • Compromise / HTTP Beaconing to Rare Destination
  • Compromise / High Volume of Connections with Beacon Score
  • Anomalous File / Numeric Exe Download

Log4j server compromise

On December 9 2021, a critical RCE vulnerability (dubbed ‘Log4Shell’) in version 2 of Apache’s Log4j was publicly disclosed by researchers at LunaSec.[12] As a logging library present in potentially millions of Java applications,[13] Log4j constitutes an obscured, yet ubiquitous feature of the digital world. The vulnerability (CVE-2021-44228), which arises from Log4j’s Java Naming and Directory Interface (JNDI) Lookup feature, enables an attacker to make a vulnerable server download and execute a malicious Java class file. To exploit the vulnerability, all the attacker must do is submit a specially crafted JNDI lookup request to the server. The fact that Log4j is present in so many applications and that the exploitation of this vulnerability is so simple, Log4Shell has been dubbed the ‘most critical vulnerability of the last decade’.[14] Attackers have been exploiting Log4Shell in the wild since at least December 1.[15] Since then, attackers have been observed exploiting the vulnerability to install crypto-mining tools, Cobalt Strike, and RATs onto vulnerable servers.[16]

On December 10, one day after the public disclosure of Log4Shell, an attacker successfully exploited the vulnerability on a vulnerable Internet-facing server within the network of a US-based architecture company. By exploiting the vulnerability, the attacker managed to get the server to download and execute a Java class file named ‘Exploit69ogQNSQYz.class’. Executing the code in this file caused the server to download a shell script file and a file related to the Kinsing crypto-mining malware. The Kinsing-infected server then went on to communicate over HTTP with a C2 server. Since the customer was using the Proactive Threat Notification (PTN) service, they were immediately alerted to this activity, and the server was subsequently quarantined, preventing crypto-mining activity from taking place.

In this example, the attacker’s exploitation of the zero-day vulnerability immediately resulted in the vulnerable server making an HTTP GET request with an unusual user-agent string (one associated with Java in this case) to a rare external IP. The models Anomalous Connection / Callback on Web Facing Device and Anomalous Connection / New User Agent to IP Without Hostname breached as a result of this behavior. The device’s subsequent file downloads and C2 activity caused several Darktrace models to breach.

A non-exhaustive list of the models which breached as a result of the unusual behavior brought about by the attacker:

  • Anomalous Connection / Callback on Web Facing Device
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous File / Internet Facing System File Download
  • Anomalous File / Script from Rare External Location
  • Device / Initial Breach Chain Compromise
  • Anomalous Connection / Posting HTTP to IP Without Hostname

Round-up

It is inevitable that attackers will attempt to exploit zero-day vulnerabilities in applications running on Internet-facing devices. Whilst identifying these attempts is useful, the fact that attackers regularly exploit new zero-days makes the task of identifying attempts to exploit them akin to a game of whack-a-mole. Whilst it is uncertain which zero-day vulnerability attackers will exploit next, what is certain is that their exploitation of it will bring about unusual behavior. No matter the vulnerability, whether it be a vulnerability in Microsoft Exchange, Confluence, GitLab, or Log4j, Darktrace will identify the unusual behaviors which inevitably result from its exploitation. By identifying unusual behaviors displayed by Internet-facing devices, Darktrace thus makes it almost impossible for attackers to successfully exploit zero-day vulnerabilities without being detected.

For Darktrace customers who want to find out more about detecting potential compromises of internet-facing devices, refer here for an exclusive supplement to this blog.

Thanks to Andy Lawrence for his contributions.

Footnotes

1. https://devco.re/blog/2021/08/06/a-new-attack-surface-on-MS-exchange-part-1-ProxyLogon/

2. https://www.volexity.com/blog/2021/03/02/active-exploitation-of-microsoft-exchange-zero-day-vulnerabilities/

3. https://www.zerodayinitiative.com/blog/2021/8/17/from-pwn2own-2021-a-new-attack-surface-on-microsoft-exchange-proxyshell

4. https://www.rapid7.com/blog/post/2021/08/12/proxyshell-more-widespread-exploitation-of-microsoft-exchange-servers/

5. https://www.kaspersky.co.uk/blog/confluence-server-cve-2021-26084/23376/

6. https://www.bleepingcomputer.com/news/security/atlassian-confluence-flaw-actively-exploited-to-install-cryptominers/

7. https://hackerone.com/reports/1154542

8. https://security.humanativaspa.it/gitlab-ce-cve-2021-22205-in-the-wild/

9.https://about.gitlab.com/releases/2021/04/14/security-release-gitlab-13-10-3-released/

10. https://www.rapid7.com/blog/post/2021/11/01/gitlab-unauthenticated-remote-code-execution-cve-2021-22205-exploited-in-the-wild/

11. https://www.hackmageddon.com/2021/12/16/1-15-november-2021-cyber-attacks-timeline/

12. https://www.lunasec.io/docs/blog/log4j-zero-day/

13. https://www.csoonline.com/article/3644472/apache-log4j-vulnerability-actively-exploited-impacting-millions-of-java-based-apps.html

14. https://www.theguardian.com/technology/2021/dec/10/software-flaw-most-critical-vulnerability-log-4-shell

15. https://www.rapid7.com/blog/post/2021/12/15/the-everypersons-guide-to-log4shell-cve-2021-44228/

16. https://www.microsoft.com/security/blog/2021/12/11/guidance-for-preventing-detecting-and-hunting-for-cve-2021-44228-log4j-2-exploitation/

DANS LE SOC
Darktrace sont des experts de classe mondiale en matière de renseignement sur les menaces, de chasse aux menaces et de réponse aux incidents. Ils fournissent une assistance SOC 24 heures sur 24 et 7 jours sur 7 à des milliers de clients Darktrace dans le monde entier. Inside the SOC est exclusivement rédigé par ces experts et fournit une analyse des cyberincidents et des tendances en matière de menaces, basée sur une expérience réelle sur le terrain.
AUTEUR
à propos de l'auteur
Sam Lister
SOC Analyst
Book a 1-1 meeting with one of our experts
share this article
CAS D'UTILISATION
Aucun élément trouvé.
PLEINS FEUX SUR LES PRODUITS
Aucun élément trouvé.
Couverture de base
Aucun élément trouvé.

More in this series

Aucun élément trouvé.

Blog

Email

Beyond DMARC: Navigating the Gaps in Email Security

Default blog imageDefault blog image
29
Feb 2024

Email threat landscape  

Email has consistently ranked among the most targeted attack vectors, given its ubiquity and criticality to business operations. From September to December 2023, 10.4 million phishing emails were detected across Darktrace’s customer fleet demonstrating the frequency of attempted email-based attacks.

Businesses are searching for ways to harden their email security posture alongside email providers who are aiming to reduce malicious emails traversing their infrastructure, affecting their clients. Domain-based Message Authentication (DMARC) is a useful industry-wide protocol organizations can leverage to move towards these goals.  

What is DMARC?

DMARC is an email authentication protocol designed to enhance the security of email communication.

Major email service providers Google and Yahoo recently made the protocol mandatory for bulk senders in an effort to make inboxes safer worldwide. The new requirements demonstrate an increasing need for a standardized solution as misconfigured or nonexistent authentication systems continue to allow threat actors to evade detection and leverage the legitimate reputation of third parties.  

DMARC is a powerful tool that allows email administrators to confidently identify and stop certain spoofed emails; however, more organizations must implement the standard for it to reach its full potential. The success and effectiveness of DMARC is dependent on broad adoption of the standard – by organizations of all sizes.  

How does DMARC work?

DMARC builds on two key authentication technologies, Sender Policy Framework (SPF) and DomainKeys Identified Mail (DKIM) and helps to significantly improve their ability to prevent domain spoofing. SPF verifies that a sender’s IP address is authorized to send emails on behalf of a particular domain and DKIM ensures integrity of email content by providing a verifiable digital signature.  

DMARC adds to this by allowing domain owners to publish policies that set expectations for how SPF and DKIM verification checks relate to email addresses presented to users and whose authenticity the receiving mail server is looking to establish.  

These policies work in tandem to help authenticate email senders by verifying the emails are from the domain they say they are, working to prevent domain spoofing attacks. Key benefits of DMARC include:

  1. Phishing protection DMARC protects against direct domain spoofing in which a threat actor impersonates a legitimate domain, a common phishing technique threat actors use to trick employees to obtain sensitive information such as privileged credentials, bank information, etc.  
  2. Improving brand reputation: As DMARC helps to prevent impersonation of domains, it stands to maintain and increase an organization’s brand reputation. Additionally, as organizational reputation improves, so will the deliverability of emails.
  3. Increased visibility: DMARC provides enhanced visibility into email communication channels, including reports of all emails sent on behalf of your domain. This allows security teams to identify shadow-IT and any unauthorized parties using their domain.

Understanding DMARC’s Limitations

DMARC is often positioned as a way for organizations to ‘solve’ their email security problems, however, 65% of the phishing emails observed by Darktrace successfully passed DMARC verification, indicating that a significant number of threat actors are capable of manipulating email security and authentication systems in their exploits. While DMARC is a valuable tool in the fight against email-based attacks, the evolving threat landscape demands a closer look at its limitations.  

As threat actors continue to innovate, improving their stealth and evasion tactics, the number of attacks with valid DMARC authentication will only continue to increase in volume and sophistication. These can include:

  1. Phishing attacks that leverage non-spoofed domains: DMARC allows an organization to protect the domains that they own, preventing threat actors from being able to send phishing emails from their domains. However, threat actors will often create and use ‘look-a-like’ domains that closely resemble an organization’s domain to dupe users. 3% of the phishing emails identified by Darktrace utilized newly created domains, demonstrating shifting tactics.  
  2. Email Account Takeovers: If a threat actor gains access to a user’s email account through other social engineering means such as credential stuffing, they can then send phishing emails from the legitimate domain to pursue further attacks. Even though these emails are malicious, DMARC would not identify them as such because they are coming from an authorized domain or sender.  

Organizations must also ensure their inbound analysis of emails is not skewed by successful DMARC authentication. Security teams cannot inherently trust emails that pass DMARC, because the source cannot always be legitimized, like in the event of an account takeover. If a threat actor gains access to an authenticated email account, emails sent by the threat actor from that account will pass DMARC – however the contents of that email may be malicious. Sender behavior must be continuously evaluated and vetted in real time as past communication history and validated DMARC cannot be solely relied upon amid an ever-changing threat landscape.  

Security teams should lean on other security measures, such as anomaly detection tools that can identify suspicious emails without relying on historical attack rules and static data. While DMARC is not a silver bullet for email security, it is nevertheless foundational in helping organizations protect their brand identity and must be viewed as an essential layer in an organization's overall cyber security strategy.  

Implementing DMARC

Despite the criticality of DMARC for preserving brand reputation and trust, adoption of the standard has been inconsistent. DMARC can be complex to implement with many organizations lacking the time required to understand and successfully implement the standard. Because of this, DMARC set-up is often outsourced, giving security and infrastructure teams little to no visibility into or control of the process.  

Implementation of DMARC is only the start of this process, as DMARC reports must be consistently monitored to ensure organizations have visibility into who is sending mail from their domain, the volume of mail being sent and whether the mail is passing authentication protocols. This process can be time consuming for security teams who are already faced with mounting responsibilities, tight budgets, and personnel shortages. These complexities unfortunately delay organizations from using DMARC – especially as many today still view it as a ‘nice to have’ rather than an essential.  

With the potential complexities of the DMARC implementation process, there are many ways security and infrastructure teams can still successfully roll out the standard. Initial implementation should start with monitoring, policy adjustment and then enforcement. As business changes over time, DMARC should be reviewed regularly to ensure ongoing protection and maintain domain reputation.

The Future of Email Security

As email-based attacks continue to rise, the industry must recognize the importance of driving adoption of foundational email authentication protocols. To do this, a new and innovative approach to DMARC is needed. DMARC products must evolve to better support organizations throughout the ongoing DMARC monitoring process, rather than just initial implementation. These products must also be able to share intelligence across an organization’s security stack, extending beyond email security tools. Integration across these products and tools will help organizations optimize their posture, ensuring deep understanding of their domain and increased visibility across the entire enterprise.

DMARC is critical in protecting brand identity and mitigating exact-domain based attacks. However, organizations must understand DMARC’s unique benefits and limitations to ensure their inboxes are fully protected. In today’s evolving threat landscape, organizations require a robust, multi-layered approach to stop email threats – in inbound mail and beyond. Email threats have evolved – its time security does too.

Join Darktrace on 9 April for a virtual event to explore the latest innovations needed to get ahead of the rapidly evolving threat landscape. Register today to hear more about our latest innovations coming to Darktrace’s offerings. For additional insights check out Darktrace’s 2023 End of Year Threat Report.

Credit to Carlos Gray and Stephen Pickman for their contribution to this blog

Continue reading
About the author
Carlos Gray
Product Manager

Blog

A l'intérieur du SOC

Quasar Remote Access Tool: When a Legitimate Admin Tool Falls into the Wrong Hands

Default blog imageDefault blog image
23
Feb 2024

The threat of interoperability

As the “as-a-Service” market continues to grow, indicators of compromise (IoCs) and malicious infrastructure are often interchanged and shared between multiple malware strains and attackers. This presents organizations and their security teams with a new threat: interoperability.

Interoperable threats not only enable malicious actors to achieve their objectives more easily by leveraging existing infrastructure and tools to launch new attacks, but the lack of clear attribution often complicates identification for security teams and incident responders, making it challenging to mitigate and contain the threat.

One such threat observed across the Darktrace customer base in late 2023 was Quasar, a legitimate remote administration tool that has becoming increasingly popular for opportunistic attackers in recent years. Working in tandem, the anomaly-based detection of Darktrace DETECT™ and the autonomous response capabilities of Darktrace RESPOND™ ensured that affected customers were promptly made aware of any suspicious activity on the attacks were contained at the earliest possible stage.

What is Quasar?

Quasar is an open-source remote administration tool designed for legitimate use; however, it has evolved to become a popular tool used by threat actors due to its wide array of capabilities.  

How does Quasar work?

For instance, Quasar can perform keylogging, take screenshots, establish a reverse proxy, and download and upload files on a target device [1].  A report released towards the end of 2023 put Quasar back on threat researchers’ radars as it disclosed the new observation of dynamic-link library (DLL) sideloading being used by malicious versions of this tool to evade detection [1].  DLL sideloading involves configuring legitimate Windows software to run a malicious file rather than the legitimate file it usually calls on as the software loads.  The evolving techniques employed by threat actors using Quasar highlights defenders’ need for anomaly-based detections that do not rely on pre-existing knowledge of attacker techniques, and can identify and alert for unusual behavior, even if it is performed by a legitimate application.

Although Quasar has been used by advanced persistent threat (APT) groups for global espionage operations [2], Darktrace observed the common usage of default configurations for Quasar, which appeared to use shared malicious infrastructure, and occurred alongside other non-compliant activity such as BitTorrent use and cryptocurrency mining.  

Quasar Attack Overview and Darktrace Coverage

Between September and October 2023, Darktrace detected multiple cases of malicious Quasar activity across several customers, suggesting probable campaign activity.  

Quasar infections can be difficult to detect using traditional network or host-based tools due to the use of stealthy techniques such as DLL side-loading and encrypted SSL connections for command-and control (C2) communication, that traditional security tools may not be able to identify.  The wide array of capabilities Quasar possesses also suggests that attacks using this tool may not necessarily be modelled against a linear kill chain. Despite this, the anomaly-based detection of Darktrace DETECT allowed it to identify IoCs related to Quasar at multiple stages of the kill chain.

Quasar Initial Infection

During the initial infection stage of a Quasar compromise observed on the network of one customer, Darktrace detected a device downloading several suspicious DLL and executable (.exe) files from multiple rare external sources using the Xmlst user agent, including the executable ‘Eppzjtedzmk[.]exe’.  Analyzing this file using open-source intelligence (OSINT) suggests this is a Quasar payload, potentially indicating this represented the initial infection through DLL sideloading [3].

Interestingly, the Xmlst user agent used to download the Quasar payload has also been associated with Raccoon Stealer, an information-stealing malware that also acts as a dropper for other malware strains [4][5]. The co-occurrence of different malware components is increasingly common across the threat landscape as MaaS operating models increases in popularity, allowing attackers to employ cross-functional components from different strains.

Figure 1: Cyber AI Analyst Incident summarizing the multiple different downloads in one related incident, with technical details for the Quasar payload included. The incident event for Suspicious File Download is also linked to Possible HTTP Command and Control, suggesting escalation of activity following the initial infection.  

Quasar Establishing C2 Communication

During this phase, devices on multiple customer networks were identified making unusual external connections to the IP 193.142.146[.]212, which was not commonly seen in their networks. Darktrace analyzed the meta-properties of these SSL connections without needing to decrypt the content, to alert the usage of an unusual port not typically associated with the SSL protocol, 4782, and the usage of self-signed certificates.  Self-signed certificates do not provide any trust value and are commonly used in malware communications and ill-reputed web servers.  

Further analysis into these alerts using OSINT indicated that 193.142.146[.]212 is a Quasar C2 server and 4782 is the default port used by Quasar [6][7].  Expanding on the self-signed certificate within the Darktrace UI (see Figure 3) reveals a certificate subject and issuer of “CN=Quasar Server CA”, which is also the default self-signed certificate compiled by Quasar [6].

Figure 2: Cyber AI Analyst Incident summarizing the repeated external connections to a rare external IP that was later associated with Quasar.
Figure 3: Device Event Log of the affected device, showing Darktrace’s analysis of the SSL Certificate associated with SSL connections to 193.142.146[.]212.

A number of insights can be drawn from analysis of the Quasar C2 endpoints detected by Darktrace across multiple affected networks, suggesting a level of interoperability in the tooling used by different threat actors. In one instance, Darktrace detected a device beaconing to the endpoint ‘bittorrents[.]duckdns[.]org’ using the aforementioned “CN=Quasar Server CA” certificate. DuckDNS is a dynamic DNS service that could be abused by attackers to redirect users from their intended endpoint to malicious infrastructure, and may be shared or reused in multiple different attacks.

Figure 4: A device’s Model Event Log, showing the Quasar Server CA SSL certificate used in connections to 41.233.139[.]145 on port 5, which resolves via passive replication to ‘bittorrents[.]duckdns[.]org’.  

The sharing of malicious infrastructure among threat actors is also evident as several OSINT sources have also associated the Quasar IP 193.142.146[.]212, detected in this campaign, with different threat types.

While 193.142.146[.]212:4782 is known to be associated with Quasar, 193.142.146[.]212:8808 and 193.142.146[.]212:6606 have been associated with AsyncRAT [11], and the same IP on port 8848 has been associated with RedLineStealer [12].  Aside from the relative ease of using already developed tooling, threat actors may prefer to use open-source malware in order to avoid attribution, making the true identity of the threat actor unclear to incident responders [1][13].  

Quasar Executing Objectives

On multiple customer deployments affected by Quasar, Darktrace detected devices using BitTorrent and performing cryptocurrency mining. While these non-compliant, and potentially malicious, activities are not necessarily specific IoCs for Quasar, they do suggest that affected devices may have had greater attack surfaces than others.

For instance, one affected device was observed initiating connections to 162.19.139[.]184, a known Minergate cryptomining endpoint, and ‘zayprostofyrim[.]zapto[.]org’, a dynamic DNS endpoint linked to the Quasar Botnet by multiple OSINT vendors [9].

Figure 5: A Darktrace DETECT Event Log showing simultaneous connections to a Quasar endpoint and a cryptomining endpoint 162.19.139[.]184.

Not only does cryptocurrency mining use a significant amount of processing power, potentially disrupting an organization’s business operations and racking up high energy bills, but the software used for this mining is often written to a poor standard, thus increasing the attack surfaces of devices using them. In this instance, Quasar may have been introduced as a secondary payload from a user or attacker-initiated download of cryptocurrency mining malware.

Similarly, it is not uncommon for malicious actors to attach malware to torrented files and there were a number of examples of Darktrace detect identifying non-compliant activity, like BitTorrent connections, overlapping with connections to external locations associated with Quasar. It is therefore important for organizations to establish and enforce technical and policy controls for acceptable use on corporate devices, particularly when remote working introduces new risks.  

Figure 6: A device’s Event Log filtered by Model Breaches, showing a device connecting to BitTorrent shortly before making new or repeated connections to unusual endpoints, which were subsequently associated to Quasar.

In some cases observed by Darktrace, devices affected by Quasar were also being used to perform data exfiltration. Analysis of a period of unusual external connections to the aforementioned Quasar C2 botnet server, ‘zayprostofyrim[.]zapto[.]org’, revealed a small data upload, which may have represented the exfiltration of some data to attacker infrastructure.

Darktrace’s Autonomous Response to Quasar Attacks

On customer networks that had Darktrace RESPOND™ enabled in autonomous response mode, the threat of Quasar was mitigated and contained as soon as it was identified by DETECT. If RESPOND is not configured to respond autonomously, these actions would instead be advisory, pending manual application by the customer’s security team.

For example, following the detection of devices downloading malicious DLL and executable files, Darktrace RESPOND advised the customer to block specific connections to the relevant IP addresses and ports. However, as the device was seen attempting to download further files from other locations, RESPOND also suggested enforced a ‘pattern of life’ on the device, meaning it was only permitted to make connections that were part its normal behavior. By imposing a pattern of life, Darktrace RESPOND ensures that a device cannot perform suspicious behavior, while not disrupting any legitimate business activity.

Had RESPOND been configured to act autonomously, these mitigative actions would have been applied without any input from the customer’s security team and the Quasar compromise would have been contained in the first instance.

Figure 7: The advisory actions Darktrace RESPOND initiated to block specific connections to a malicious IP and to enforce the device’s normal patterns of life in response to the different anomalies detected on the device.

In another case, one customer affected by Quasar did have enabled RESPOND to take autonomous action, whilst also integrating it with a firewall. Here, following the detection of a device connecting to a known Quasar IP address, RESPOND initially blocked it from making connections to the IP via the customer’s firewall. However, as the device continued to perform suspicious activity after this, RESPOND escalated its response by blocking all outgoing connections from the device, effectively preventing any C2 activity or downloads.

Figure 8: RESPOND actions triggered to action via integrated firewall and TCP Resets.

Conclusion

When faced with a threat like Quasar that utilizes the infrastructure and tools of both legitimate services and other malicious malware variants, it is essential for security teams to move beyond relying on existing knowledge of attack techniques when safeguarding their network. It is no longer enough for organizations to rely on past attacks to defend against the attacks of tomorrow.

Crucially, Darktrace’s unique approach to threat detection focusses on the anomaly, rather than relying on a static list of IoCs or "known bads” based on outdated threat intelligence. In the case of Quasar, alternative or future strains of the malware that utilize different IoCs and TTPs would still be identified by Darktrace as anomalous and immediately alerted.

By learning the ‘normal’ for devices on a customer’s network, Darktrace DETECT can recognize the subtle deviations in a device’s behavior that could indicate an ongoing compromise. Darktrace RESPOND is subsequently able to follow this up with swift and targeted actions to contain the attack and prevent it from escalating further.

Credit to Nicole Wong, Cyber Analyst, Vivek Rajan Cyber Analyst

Appendices

Darktrace DETECT Model Breaches

  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Anomalous Connection / Anomalous SSL without SNI to New External
  • Anomalous Connection / Application Protocol on Uncommon Port
  • Anomalous Connection / Rare External SSL Self-Signed
  • Compromise / New or Repeated to Unusual SSL Port
  • Compromise / Beaconing Activity To External Rare
  • Compromise / High Volume of Connections with Beacon Score
  • Compromise / Large Number of Suspicious Failed Connections
  • Unusual Activity / Unusual External Activity

List of IoCs

IP:Port

193.142.146[.]212:4782 -Quasar C2 IP and default port

77.34.128[.]25: 8080 - Quasar C2 IP

Domain

zayprostofyrim[.]zapto[.]org - Quasar C2 Botnet Endpoint

bittorrents[.]duckdns[.]org - Possible Quasar C2 endpoint

Certificate

CN=Quasar Server CA - Default certificate used by Quasar

Executable

Eppzjtedzmk[.]exe - Quasar executable

IP Address

95.214.24[.]244 - Quasar C2 IP

162.19.139[.]184 - Cryptocurrency Miner IP

41.233.139[.]145[VR1] [NW2] - Possible Quasar C2 IP

MITRE ATT&CK Mapping

Command and Control

T1090.002: External Proxy

T1071.001: Web Protocols

T1571: Non-Standard Port

T1001: Data Obfuscation

T1573: Encrypted Channel

T1071: Application Layer Protocol

Resource Development

T1584: Compromise Infrastructure

References

[1] https://thehackernews.com/2023/10/quasar-rat-leverages-dll-side-loading.html

[2] https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/cicada-apt10-japan-espionage

[3]https://www.virustotal.com/gui/file/bd275a1f97d1691e394d81dd402c11aaa88cc8e723df7a6aaf57791fa6a6cdfa/community

[4] https://twitter.com/g0njxa/status/1691826188581298389

[5] https://www.linkedin.com/posts/grjk83_raccoon-stealer-announce-return-after-hiatus-activity-7097906612580802560-1aj9

[6] https://community.netwitness.com/t5/netwitness-community-blog/using-rsa-netwitness-to-detect-quasarrat/ba-p/518952

[7] https://www.cisa.gov/news-events/analysis-reports/ar18-352a

[8]https://any.run/report/6cf1314c130a41c977aafce4585a144762d3fb65f8fe493e836796b989b002cb/7ac94b56-7551-4434-8e4f-c928c57327ff

[9] https://threatfox.abuse.ch/ioc/891454/

[10] https://www.virustotal.com/gui/ip-address/41.233.139.145/relations

[11] https://raw.githubusercontent.com/stamparm/maltrail/master/trails/static/malware/asyncrat.txt

[12] https://sslbl.abuse.ch/ssl-certificates/signature/RedLineStealer/

[13] https://www.botconf.eu/botconf-presentation-or-article/hunting-the-quasar-family-how-to-hunt-a-malware-family/

Continue reading
About the author
Nicole Wong
Cyber Security Analyst

Bonne nouvelle pour votre entreprise.
Mauvaise nouvelle pour les méchants.

Commencez votre essai gratuit

Commencez votre essai gratuit

Livraison flexible
Cloud-based deployment.
Installation rapide
Une heure seulement pour la mise en place - et encore moins pour un essai de sécurité du courrier électronique.
Choisissez votre voyage
Essayez Self-Learning AI là où vous en avez le plus besoin - y compris dans le cloud, sur le réseau ou par courriel.
Aucun engagement
Accès complet à Darktrace Threat Visualizer et à trois rapports sur mesure sur les menaces, sans obligation d'achat.
For more information, please see our Privacy Notice.
Thanks, your request has been received
A member of our team will be in touch with you shortly.
YOU MAY FIND INTERESTING
Oups ! Un problème est survenu lors de la soumission du formulaire.

Obtenez une démo

Livraison flexible
Vous pouvez l'installer virtuellement ou avec du matériel.
Installation rapide
Une heure seulement pour la mise en place - et encore moins pour un essai de sécurité du courrier électronique.
Choisissez votre voyage
Essayez Self-Learning AI là où vous en avez le plus besoin - y compris dans le cloud, sur le réseau ou par courriel.
Aucun engagement
Accès complet à Darktrace Threat Visualizer et à trois rapports sur mesure sur les menaces, sans obligation d'achat.
Merci ! Votre soumission a été reçue !
Oups ! Un problème est survenu lors de la soumission du formulaire.