A l'intérieur du SOC

Steps of a BumbleBee Intrusion to a Cobalt Strike| Darktrace

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
Sep 2022
Sep 2022
Discover the steps of a Bumblebee intrusion, from initial detection to Cobalt Strike deployment. Learn how Darktrace defends against evolving threats with AI.


Throughout April 2022, Darktrace observed several cases in which threat actors used the loader known as ‘BumbleBee’ to install Cobalt Strike Beacon onto victim systems. The threat actors then leveraged Cobalt Strike Beacon to conduct network reconnaissance, obtain account password data, and write malicious payloads across the network. In this article, we will provide details of the actions threat actors took during their intrusions, as well as details of the network-based behaviours which served as evidence of the actors’ activities.  


In March 2022, Google’s Threat Analysis Group (TAG) provided details of the activities of an Initial Access Broker (IAB) group dubbed ‘Exotic Lily’ [1]. Before March 2022, Google’s TAG observed Exotic Lily leveraging sophisticated impersonation techniques to trick employees of targeted organisations into downloading ISO disc image files from legitimate file storage services such as WeTransfer. These ISO files contained a Windows shortcut LNK file and a BazarLoader Dynamic Link Library (i.e, DLL). BazarLoader is a member of the Bazar family — a family of malware (including both BazarLoader and BazarBackdoor) with strong ties to the Trickbot malware, the Anchor malware family, and Conti ransomware. BazarLoader, which is typically distributed via email campaigns or via fraudulent call campaigns, has been known to drop Cobalt Strike as a precursor to Conti ransomware deployment [2]. 

In March 2022, Google’s TAG observed Exotic Lily leveraging file storage services to distribute an ISO file containing a DLL which, when executed, caused the victim machine to make HTTP requests with the user-agent string ‘bumblebee’. Google’s TAG consequently called this DLL payload ‘BumbleBee’. Since Google’s discovery of BumbleBee back in March, several threat research teams have reported BumbleBee samples dropping Cobalt Strike [1]/[3]/[4]/[5]. It has also been reported by Proofpoint [3] that other threat actors such as TA578 and TA579 transitioned to BumbleBee in March 2022.  

Interestingly, BazarLoader’s replacement with BumbleBee seems to coincide with the leaking of the Conti ransomware gang’s Jabber chat logs at the end of February 2022. On February 25th, 2022, the Conti gang published a blog post announcing their full support for the Russian state’s invasion of Ukraine [6]. 

Figure 1: The Conti gang's public declaration of their support for Russia's invasion of Ukraine

Within days of sharing their support for Russia, logs from a server hosting the group’s Jabber communications began to be leaked on Twitter by @ContiLeaks [7]. The leaked logs included records of conversations among nearly 500 threat actors between Jan 2020 and March 2022 [8]. The Jabber logs were supposedly stolen and leaked by a Ukrainian security researcher [3]/[6].

Affiliates of the Conti ransomware group were known to use BazarLoader to deliver Conti ransomware [9]. BumbleBee has now also been linked to the Conti ransomware group by several threat research teams [1]/[10]/[11]. The fact that threat actors’ transition from BazarLoader to BumbleBee coincides with the leak of Conti’s Jabber chat logs may indicate that the transition occurred as a result of the leaks [3]. Since the transition, BumbleBee has become a significant tool in the cyber-crime ecosystem, with links to several ransomware operations such as Conti, Quantum, and Mountlocker [11]. The rising use of BumbleBee by threat actors, and particularly ransomware actors, makes the early detection of BumbleBee key to identifying the preparatory stages of ransomware attacks.  

Intrusion Kill Chain 

In April 2022, Darktrace observed the following pattern of threat actor activity within the networks of several Darktrace clients: 

1.     Threat actor socially engineers user via email into running a BumbleBee payload on their device

2.     BumbleBee establishes HTTPS communication with a BumbleBee C2 server

3.     Threat actor instructs BumbleBee to download and execute Cobalt Strike Beacon

4.     Cobalt Strike Beacon establishes HTTPS communication with a Cobalt Strike C2 server

5.     Threat actor instructs Cobalt Strike Beacon to scan for open ports and to enumerate network shares

6.     Threat actor instructs Cobalt Strike Beacon to use the DCSync technique to obtain password account data from an internal domain controller

7.     Threat actor instructs Cobalt Strike Beacon to distribute malicious payloads to other internal systems 

With limited visibility over affected clients’ email environments, Darktrace was unable to determine how the threat actors interacted with users to initiate the BumbleBee infection. However, based on open-source reporting on BumbleBee [3]/[4]/[10]/[11]/[12]/[13]/[14]/[15]/[16]/[17], it is likely that the actors tricked target users into running BumbleBee by sending them emails containing either a malicious zipped ISO file or a link to a file storage service hosting the malicious zipped ISO file. These ISO files typically contain a LNK file and a BumbleBee DLL payload. The properties of these LNK files are set in such a way that opening them causes the corresponding DLL payload to run. 

In several cases observed by Darktrace, devices contacted a file storage service such as Microsoft OneDrive or Google Cloud Storage immediately before they displayed signs of BumbleBee infection. In these cases, it is likely that BumbleBee was executed on the users’ devices as a result of the users interacting with an ISO file which they were tricked into downloading from a file storage service. 

Figure 2: The above figure, taken from the event log for an infected device, shows that the device contacted a OneDrive endpoint immediately before making HTTPS connections to the BumbleBee C2 server, 45.140.146[.]244
Figure 3: The above figure, taken from the event log for an infected device, shows that the device contacted a Google Cloud Storage endpoint and then the malicious endpoint ‘marebust[.]com’ before making HTTPS connections to the  BumbleBee C2 servers, 108.62.118[.]61 and 23.227.198[.]217

After users ran a BumbleBee payload, their devices immediately initiated communications with BumbleBee C2 servers. The BumbleBee samples used HTTPS for their C2 communication, and all presented a common JA3 client fingerprint, ‘0c9457ab6f0d6a14fc8a3d1d149547fb’. All analysed samples excluded domain names in their ‘client hello’ messages to the C2 servers, which is unusual for legitimate HTTPS communication. External SSL connections which do not specify a destination domain name and whose JA3 client fingerprint is ‘0c9457ab6f0d6a14fc8a3d1d149547fb’ are potential indicators of BumbleBee infection. 

Figure 4:The above figure, taken from Darktrace's Advanced Search interface, depicts an infected device's spike in HTTPS connections with the JA3 client fingerprint ‘0c9457ab6f0d6a14fc8a3d1d149547fb’

Once the threat actors had established HTTPS communication with the BumbleBee-infected systems, they instructed BumbleBee to download and execute Cobalt Strike Beacon. This behaviour resulted in the infected systems making HTTPS connections to Cobalt Strike C2 servers. The Cobalt Strike Beacon samples all had the same JA3 client fingerprint ‘a0e9f5d64349fb13191bc781f81f42e1’ — a fingerprint associated with previously seen Cobalt Strike samples [18]. The domain names ‘fuvataren[.]com’ and ‘cuhirito[.]com’ were observed in the samples’ HTTPS communications. 

Figure 5:The above figure, taken from Darktrace's Advanced Search interface, depicts the Cobalt Strike C2 communications which immediately followed a device's BumbleBee C2 activity

Cobalt Strike Beacon payloads call home to C2 servers for instructions. In the cases observed, threat actors first instructed the Beacon payloads to perform reconnaissance tasks, such as SMB port scanning and SMB enumeration. It is likely that the threat actors performed these steps to inform the next stages of their operations.  The SMB enumeration activity was evidenced by the infected devices making NetrShareEnum and NetrShareGetInfo requests to the srvsvc RPC interface on internal systems.

Figure 6: The above figure, taken from Darktrace’s Advanced Search interface, depicts a spike in srvsvc requests coinciding with the infected device's Cobalt Strike C2 activity

After providing Cobalt Strike Beacon with reconnaissance tasks, the threat actors set out to obtain account password data in preparation for the lateral movement phase of their operation. To obtain account password data, the actors instructed Cobalt Strike Beacon to use the DCSync technique to replicate account password data from an internal domain controller. This activity was evidenced by the infected devices making DRSGetNCChanges requests to the drsuapi RPC interface on internal domain controllers. 

Figure 7: The above figure, taken from Darktrace’s Advanced Search interface, depicts a spike in DRSGetNCChanges requests coinciding with the infected device’s Cobalt Strike C2 activity

After leveraging the DCSync technique, the threat actors sought to broaden their presence within the targeted networks.  To achieve this, they instructed Cobalt Strike Beacon to get several specially selected internal systems to run a suspiciously named DLL (‘f.dll’). Cobalt Strike first established SMB sessions with target systems using compromised account credentials. During these sessions, Cobalt Strike uploaded the malicious DLL to a hidden network share. To execute the DLL, Cobalt Strike abused the Windows Service Control Manager (SCM) to remotely control and manipulate running services on the targeted internal hosts. Cobalt Strike first opened a binding handle to the svcctl interface on the targeted destination systems. It then went on to make an OpenSCManagerW request, a CreateServiceA request, and a StartServiceA request to the svcctl interface on the targeted hosts: 

·      Bind request – opens a binding handle to the relevant RPC interface (in this case, the svcctl interface) on the destination device

·      OpenSCManagerW request – establishes a connection to the Service Control Manager (SCM) on the destination device and opens a specified SCM database

·      CreateServiceA request – creates a service object and adds it to the specified SCM database 

·      StartServiceA request – starts a specified service

Figure 8: The above figure, taken from Darktrace’s Advanced Search interface, outlines an infected system’s lateral movement activities. After writing a file named ‘f.dll’ to the C$ share on an internal server, the infected device made several RPC requests to the svcctl interface on the targeted server

It is likely that the DLL file which the threat actors distributed was a Cobalt Strike payload. In one case, however, the threat actor was also seen distributing and executing a payload named ‘procdump64.exe’. This may suggest that the threat actor was seeking to use ProcDump to obtain authentication material stored in the process memory of the Local Security Authority Subsystem Service (LSASS). Given that ProcDump is a legitimate Windows Sysinternals tool primarily used for diagnostics and troubleshooting, it is likely that threat actors leveraged it in order to evade detection. 

In all the cases which Darktrace observed, threat actors’ attempts to conduct follow-up activities after moving laterally were thwarted with the help of Darktrace’s SOC team. It is likely that the threat actors responsible for the reported activities were seeking to deploy ransomware within the targeted networks. The steps which the threat actors took to make progress towards achieving this objective resulted in highly unusual patterns of network traffic. Darktrace’s detection of these unusual network activities allowed security teams to prevent these threat actors from achieving their disruptive objectives. 

Darktrace Coverage

Once threat actors succeeded in tricking users into running BumbleBee on their devices, Darktrace’s Self-Learning AI immediately detected the command-and-control (C2) activity generated by the loader. BumbleBee’s C2 activity caused the following Darktrace models to breach:

·      Anomalous Connection / Anomalous SSL without SNI to New External

·      Anomalous Connection / Suspicious Self-Signed SSL

·      Anomalous Connection / Rare External SSL Self-Signed

·      Compromise / Suspicious TLS Beaconing To Rare External

·      Compromise / Beacon to Young Endpoint

·      Compromise / Beaconing Activity To External Rare

·      Compromise / Sustained SSL or HTTP Increase

·      Compromise / Suspicious TLS Beaconing To Rare External

·      Compromise / SSL Beaconing to Rare Destination

·      Compromise / Large Number of Suspicious Successful Connections

·      Device / Multiple C2 Model Breaches 

BumbleBee’s delivery of Cobalt Strike Beacon onto target systems resulted in those systems communicating with Cobalt Strike C2 servers. Cobalt Strike Beacon’s C2 communications resulted in breaches of the following models: 

·      Compromise / Beaconing Activity To External Rare

·      Compromise / High Volume of Connections with Beacon Score

·      Compromise / Large Number of Suspicious Successful Connections

·      Compromise / Sustained SSL or HTTP Increase

·      Compromise / SSL or HTTP Beacon

·      Compromise / Slow Beaconing Activity To External Rare

·      Compromise / SSL Beaconing to Rare Destination 

The threat actors’ subsequent port scanning and SMB enumeration activities caused the following models to breach:

·      Device / Network Scan

·      Anomalous Connection / SMB Enumeration

·      Device / Possible SMB/NTLM Reconnaissance

·      Device / Suspicious Network Scan Activity  

The threat actors’ attempts to obtain account password data from domain controllers using the DCSync technique resulted in breaches of the following models: 

·      Compromise / Unusual SMB Session and DRS

·      Anomalous Connection / Anomalous DRSGetNCChanges Operation

Finally, the threat actors’ attempts to internally distribute and execute payloads resulted in breaches of the following models:

·      Compliance / SMB Drive Write

·      Device / Lateral Movement and C2 Activity

·      Device / SMB Lateral Movement

·      Device / Multiple Lateral Movement Model Breaches

·      Anomalous File / Internal / Unusual SMB Script Write

·      Anomalous File / Internal / Unusual Internal EXE File Transfer

·      Anomalous Connection / High Volume of New or Uncommon Service Control

If Darktrace/Network had been configured in the targeted environments, then it would have blocked BumbleBee’s C2 communications, which would have likely prevented the threat actors from delivering Cobalt Strike Beacon into the target networks. 

Figure 9: Attack timeline


Threat actors use loaders to smuggle more harmful payloads into target networks. Prior to March 2022, it was common to see threat actors using the BazarLoader loader to transfer their payloads into target environments. However, since the public disclosure of the Conti gang’s Jabber chat logs at the end of February, the cybersecurity world has witnessed a shift in tradecraft. Threat actors have seemingly transitioned from using BazarLoader to using a novel loader known as ‘BumbleBee’. Since BumbleBee first made an appearance in March 2022, a growing number of threat actors, in particular ransomware actors, have been observed using it.

It is likely that this trend will continue, which makes the detection of BumbleBee activity vital for the prevention of ransomware deployment within organisations’ networks. During April, Darktrace’s SOC team observed a particular pattern of threat actor activity involving the BumbleBee loader. After tricking users into running BumbleBee on their devices, threat actors were seen instructing BumbleBee to drop Cobalt Strike Beacon. Threat actors then leveraged Cobalt Strike Beacon to conduct network reconnaissance, obtain account password data from internal domain controllers, and distribute malicious payloads internally.  Darktrace’s detection of these activities prevented the threat actors from achieving their likely harmful objectives.  

Thanks to Ross Ellis for his contributions to this blog.





















Darktrace sont des experts de classe mondiale en matière de renseignement sur les menaces, de chasse aux menaces et de réponse aux incidents. Ils fournissent une assistance SOC 24 heures sur 24 et 7 jours sur 7 à des milliers de clients Darktrace dans le monde entier. Inside the SOC est exclusivement rédigé par ces experts et fournit une analyse des cyberincidents et des tendances en matière de menaces, basée sur une expérience réelle sur le terrain.
à propos de l'auteur
Sam Lister
SOC Analyst
Book a 1-1 meeting with one of our experts
share this article
Aucun élément trouvé.
Aucun élément trouvé.
Couverture de base
Aucun élément trouvé.

More in this series

Aucun élément trouvé.



How to Protect your Organization Against Microsoft Teams Phishing Attacks

Default blog imageDefault blog image
May 2024

The problem: Microsoft Teams phishing attacks are on the rise

Around 83% of Fortune 500 companies rely on Microsoft Office products and services1, with Microsoft Teams and Microsoft SharePoint in particular emerging as critical platforms to the business operations of the everyday workplace. Researchers across the threat landscape have begun to observe these legitimate services being leveraged more and more by malicious actors as an initial access method.

As Teams becomes a more prominent feature of the workplace many employees rely on it for daily internal and external communication, even surpassing email usage in some organizations. As Microsoft2 states, "Teams changes your relationship with email. When your whole group is working in Teams, it means you'll all get fewer emails. And you'll spend less time in your inbox, because you'll use Teams for more of your conversations."

However, Teams can be exploited to send targeted phishing messages to individuals either internally or externally, while appearing legitimate and safe. Users might receive an external message request from a Teams account claiming to be an IT support service or otherwise affiliated with the organization. Once a user has accepted, the threat actor can launch a social engineering campaign or deliver a malicious payload. As a primarily internal tool there is naturally less training and security awareness around Teams – due to the nature of the channel it is assumed to be a trusted source, meaning that social engineering is already one step ahead.

Screenshot of a Microsoft Teams message request from a Midnight Blizzard-controlled account (courtesy of Microsoft)
Figure 1: Screenshot of a Microsoft Teams message request from a Midnight Blizzard-controlled account (courtesy of Microsoft)

Microsoft Teams Phishing Examples

Microsoft has identified several major phishing attacks using Teams within the past year.

In July 2023, Microsoft announced that the threat actor known as Midnight Blizzard – identified by the United States as a Russian state-sponsored group – had launched a series of phishing campaigns via Teams with the aim of stealing user credentials. These attacks used previously compromised Microsoft 365 accounts and set up new domain names that impersonated legitimate IT support organizations. The threat actors then used social engineering tactics to trick targeted users into sharing their credentials via Teams, enabling them to access sensitive data.  

At a similar time, threat actor Storm-0324 was observed sending phishing lures via Teams containing links to malicious SharePoint-hosted files. The group targeted organizations that allow Teams users to interact and share files externally. Storm-0324’s goal is to gain initial access to hand over to other threat actors to pursue more dangerous follow-on attacks like ransomware.

For a more in depth look at how Darktrace stops Microsoft Teams phishing read our blog: Don’t Take the Bait: How Darktrace Keeps Microsoft Teams Phishing Attacks at Bay

The market: Existing Microsoft Teams security solutions are insufficient

Microsoft’s native Teams security focuses on payloads, namely links and attachments, as the principal malicious component of any phishing. These payloads are relatively straightforward to detect with their experience in anti-virus, sandboxing, and IOCs. However, this approach is unable to intervene before the stage at which payloads are delivered, before the user even gets the chance to accept or deny an external message request. At the same time, it risks missing more subtle threats that don’t include attachments or links – like early stage phishing, which is pure social engineering – or completely new payloads.

Equally, the market offering for Teams security is limited. Security solutions available on the market are always payload-focused, rather than taking into account the content and context in which a link or attachment is sent. Answering questions like:

  • Does it make sense for these two accounts to speak to each other?
  • Are there any linguistic indicators of inducement?

Furthermore, they do not correlate with email to track threats across multiple communication environments which could signal a wider campaign. Effectively, other market solutions aren’t adding extra value – they are protecting against the same types of threats that Microsoft is already covering by default.

The other aspect of Teams security that native and market solutions fail to address is the account itself. As well as focusing on Teams threats, it’s important to analyze messages to understand the normal mode of communication for a user, and spot when a user’s Teams activity might signal account takeover.

The solution: How Darktrace protects Microsoft Teams against sophisticated threats

With its biggest update to Darktrace/Email ever, Darktrace now offers support for Microsoft Teams. With that, we are bringing the same AI philosophy that protects your email and accounts to your messaging environment.  

Our Self-Learning AI looks at content and context for every communication, whether that’s sent in an email or Teams message. It looks at actual user behavior, including language patterns, relationship history of sender and recipient, tone and payloads, to understand if a message poses a threat. This approach allows Darktrace to detect threats such as social engineering and payloadless attacks using visibility and forensic capabilities that Microsoft security doesn’t currently offer, as well as early symptoms of account compromise.  

Unlike market solutions, Darktrace doesn’t offer a siloed approach to Teams security. Data and signals from Teams are shared across email to inform detection, and also with the wider Darktrace ActiveAI security platform. By correlating information from email and Teams with network and apps security, Darktrace is able to better identify suspicious Teams activity and vice versa.  

Interested in the other ways Darktrace/Email augments threat detection? Read our latest blog on how improving the quality of end-user reporting can decrease the burden on the SOC. To find our more about Darktrace's enduring partnership with Microsoft, click here.


[1] Essential Microsoft Office Statistics in 2024

[2] Microsoft blog, Microsoft Teams and email, living in harmony, 2024

Continue reading
About the author
Carlos Gray
Product Manager


A l'intérieur du SOC

Don’t Take the Bait: How Darktrace Keeps Microsoft Teams Phishing Attacks at Bay

Default blog imageDefault blog image
May 2024

Social Engineering in Phishing Attacks

Faced with increasingly cyber-aware endpoint users and vigilant security teams, more and more threat actors are forced to think psychologically about the individuals they are targeting with their phishing attacks. Social engineering methods like taking advantage of the human emotions of their would-be victims, pressuring them to open emails or follow links or face financial or legal repercussions, and impersonating known and trusted brands or services, have become common place in phishing campaigns in recent years.

Phishing with Microsoft Teams

The malicious use of the popular communications platform Microsoft Teams has become widely observed and discussed across the threat landscape, with many organizations adopting it as their primary means of business communication, and many threat actors using it as an attack vector. As Teams allows users to communicate with people outside of their organization by default [1], it becomes an easy entry point for potential attackers to use as a social engineering vector.

In early 2024, Darktrace/Apps™ identified two separate instances of malicious actors using Microsoft Teams to launch a phishing attack against Darktrace customers in the Europe, the Middle East and Africa (EMEA) region. Interestingly, in this case the attackers not only used a well-known legitimate service to carry out their phishing campaign, but they were also attempting to impersonate an international hotel chain.

Despite these attempts to evade endpoint users and traditional security measures, Darktrace’s anomaly detection enabled it to identify the suspicious phishing messages and bring them to the customer’s attention. Additionally, Darktrace’s autonomous response capability, was able to follow-up these detections with targeted actions to contain the suspicious activity in the first instance.

Darktrace Coverage of Microsoft Teams Phishing

Chats Sent by External User and Following Actions by Darktrace

On February 29, 2024, Darktrace detected the presence of a new external user on the Software-as-a-Service (SaaS) environment of an EMEA customer for the first time. The user, “REDACTED@InternationalHotelChain[.]onmicrosoft[.]com” was only observed on this date and no further activities were detected from this user after February 29.

Later the same day, the unusual external user created its first chat on Microsoft Teams named “New Employee Loyalty Program”. Over the course of around 5 minutes, the user sent 63 messages across 21 different chats to unique internal users on the customer’s SaaS platform. All these chats included the ‘foreign tenant user’ and one of the customer’s internal users, likely in an attempt to remain undetected. Foreign tenant user, in this case, refers to users without access to typical internal software and privileges, indicating the presence of an external user.

Darktrace’s detection of unusual messages being sent by a suspicious external user via Microsoft Teams.
Figure 1: Darktrace’s detection of unusual messages being sent by a suspicious external user via Microsoft Teams.
Advanced Search results showing the presence of a foreign tenant user on the customer’s SaaS environment.
Figure 2: Advanced Search results showing the presence of a foreign tenant user on the customer’s SaaS environment.

Darktrace identified that the external user had connected from an unusual IP address located in Poland, 195.242.125[.]186. Darktrace understood that this was unexpected behavior for this user who had only previously been observed connecting from the United Kingdom; it further recognized that no other users within the customer’s environment had connected from this external source, thereby deeming it suspicious. Further investigation by Darktrace’s analyst team revealed that the endpoint had been flagged as malicious by several open-source intelligence (OSINT) vendors.

External Summary highlighting the rarity of the rare external source from which the Teams messages were sent.
Figure 3: External Summary highlighting the rarity of the rare external source from which the Teams messages were sent.

Following Darktrace’s initial detection of these suspicious Microsoft Teams messages, Darktrace's autonomous response was able to further support the customer by providing suggested mitigative actions that could be applied to stop the external user from sending any additional phishing messages.

Unfortunately, at the time of this attack Darktrace's autonomous response capability was configured in human confirmation mode, meaning any autonomous response actions had to be manually actioned by the customer. Had it been enabled in autonomous response mode, it would have been able promptly disrupt the attack, disabling the external user to prevent them from continuing their phishing attempts and securing precious time for the customer’s security team to begin their own remediation procedures.

Darktrace autonomous response actions that were suggested following the ’Large Volume of Messages Sent from New External User’ detection model alert.
Figure 4: Darktrace autonomous response actions that were suggested following the ’Large Volume of Messages Sent from New External User’ detection model alert.

External URL Sent within Teams Chats

Within the 21 Teams chats created by the threat actor, Darktrace identified 21 different external URLs being sent, all of which included the domain "cloud-sharcpoint[.]com”. Many of these URLs had been recently established and had been flagged as malicious by OSINT providers [3]. This was likely an attempt to impersonate “cloud-sharepoint[.]com”, the legitimate domain of Microsoft SharePoint, with the threat actor attempting to ‘typo-squat’ the URL to convince endpoint users to trust the legitimacy of the link. Typo-squatted domains are commonly misspelled URLs registered by opportunistic attackers in the hope of gaining the trust of unsuspecting targets. They are often used for nefarious purposes like dropping malicious files on devices or harvesting credentials.

Upon clicking this malicious link, users were directed to a similarly typo-squatted domain, “InternatlonalHotelChain[.]sharcpoInte-docs[.]com”. This domain was likely made to appear like the SharePoint URL used by the international hotel chain being impersonated.

Redirected link to a fake SharePoint page attempting to impersonate an international hotel chain.
Figure 5: Redirected link to a fake SharePoint page attempting to impersonate an international hotel chain.

This fake SharePoint page used the branding of the international hotel chain and contained a document named “New Employee Loyalty Program”; the same name given to the phishing messages sent by the attacker on Microsoft Teams. Upon accessing this file, users would be directed to a credential harvester, masquerading as a Microsoft login page, and prompted to enter their credentials. If successful, this would allow the attacker to gain unauthorized access to a user’s SaaS account, thereby compromising the account and enabling further escalation in the customer’s environment.

Figure 6: A fake Microsoft login page that popped-up when attempting to open the ’New Employee Loyalty Program’ document.

This is a clear example of an attacker attempting to leverage social engineering tactics to gain the trust of their targets and convince them to inadvertently compromise their account. Many corporate organizations partner with other companies and well-known brands to offer their employees loyalty programs as part of their employment benefits and perks. As such, it would not necessarily be unexpected for employees to receive such an offer from an international hotel chain. By impersonating an international hotel chain, threat actors would increase the probability of convincing their targets to trust and click their malicious messages and links, and unintentionally compromising their accounts.

In spite of the attacker’s attempts to impersonate reputable brands, platforms, Darktrace/Apps was able to successfully recognize the malicious intent behind this phishing campaign and suggest steps to contain the attack. Darktrace recognized that the user in question had deviated from its ‘learned’ pattern of behavior by connecting to the customer’s SaaS environment from an unusual external location, before proceeding to send an unusually large volume of messages via Teams, indicating that the SaaS account had been compromised.

A Wider Campaign?

Around a month later, in March 2024, Darktrace observed a similar incident of a malicious actor impersonating the same international hotel chain in a phishing attacking using Microsoft Teams, suggesting that this was part of a wider phishing campaign. Like the previous example, this customer was also based in the EMEA region.  

The attack tactics identified in this instance were very similar to the previously example, with a new external user identified within the network proceeding to create a series of Teams messages named “New Employee Loyalty Program” containing a typo-squatted external links.

There were a few differences with this second incident, however, with the attacker using the domain “@InternationalHotelChainExpeditions[.]onmicrosoft[.]com” to send their malicious Teams messages and using differently typo-squatted URLs to imitate Microsoft SharePoint.

As both customers targeted by this phishing campaign were subscribed to Darktrace’s Proactive Threat Notification (PTN) service, this suspicious SaaS activity was promptly escalated to the Darktrace Security Operations Center (SOC) for immediate triage and investigation. Following their investigation, the SOC team sent an alert to the customers informing them of the compromise and advising urgent follow-up.


While there are clear similarities between these Microsoft Teams-based phishing attacks, the attackers here have seemingly sought ways to refine their tactics, techniques, and procedures (TTPs), leveraging new connection locations and creating new malicious URLs in an effort to outmaneuver human security teams and conventional security tools.

As cyber threats grow increasingly sophisticated and evasive, it is crucial for organizations to employ intelligent security solutions that can see through social engineering techniques and pinpoint suspicious activity early.

Darktrace’s Self-Learning AI understands customer environments and is able to recognize the subtle deviations in a device’s behavioral pattern, enabling it to effectively identify suspicious activity even when attackers adapt their strategies. In this instance, this allowed Darktrace to detect the phishing messages, and the malicious links contained within them, despite the seemingly trustworthy source and use of a reputable platform like Microsoft Teams.

Credit to Min Kim, Cyber Security Analyst, Raymond Norbert, Cyber Security Analyst and Ryan Traill, Threat Content Lead


Darktrace Model Detections

SaaS Model

Large Volume of Messages Sent from New External User

SaaS / Unusual Activity / Large Volume of Messages Sent from New External User

Indicators of Compromise (IoCs)

IoC – Type - Description

https://cloud-sharcpoint[.]com/[a-zA-Z0-9]{15} - Example hostname - Malicious phishing redirection link

InternatlonalHotelChain[.]sharcpolnte-docs[.]com – Hostname – Redirected Link

195.242.125[.]186 - External Source IP Address – Malicious Endpoint

MITRE Tactics

Tactic – Technique

Phishing – Initial Access (T1566)





Continue reading
About the author
Min Kim
Cyber Security Analyst
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

Commencez votre essai gratuit
Darktrace AI protecting a business from cyber threats.