Blog

A l'intérieur du SOC

A thief in red: Compliance and the RedLine information stealer

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
13
Sep 2022
13
Sep 2022

With the continued rise of malware as a service (MaaS), it is now easier than ever to find and deploy information stealers [1]. Given this, it is crucial that companies begin to prioritize good cyber hygiene, and address compliance issues within their environments. Thanks to MaaS, attackers with little to no experience can amplify what might seem like a low-risk attack, into a significant compromise. This blog will investigate a compromise that could have been mitigated with better cyber hygiene and enhanced awareness around compliance issues.

Figure 1: Timeline of the attack

In May 2022 Darktrace DETECT/Network identified a device linked with multiple compliance alerts for ‘torrent’ activity within a Latin American telecommunications company. This culminated in the device downloading a suspicious executable file from an archived webpage. At first, analysis of the downloaded file indicated that it could be a legitimate, albeit outdated software relevant to the client’s industry vertical (SNMPc management tool for GeoDesy GD-300). However, as this was the first event before further suspicious activities, it was also possible that the software downloaded was packaged with malware and marked an initial compromise. Since early April, the device had regularly breached compliance alerts for both BitTorrent and uTorrent (a BitTorrent client). These connections occurred over a common torrenting port, 6881, and may have represented the infection vector.  

Figure 2: View of archived webpage which the suspicious executable was downloaded from

Shortly after the executable was downloaded, Darktrace DETECT alerted a new outbound SSH connection with the following notice in Advanced Search: ‘SSH::Heuristic_Login_Success’. This was highlighted because the breach device did not commonly make connections over this protocol and the destination was a never-before-seen Bulgarian IP address (79.142.70[.]239). The connection lasted 4 minutes, and the device downloaded 31.36 MB of data. 

Following this, the breach device was seen making unusual HTTP connections to rare Russian and Danish endpoints using suspicious user agents. The Russian endpoint was noted for hosting a text file (‘incricinfo[.]com') that listed a single domain which was recently registered. The connections to the Danish endpoint were made to an IP with a URI that OSINT connected to the use of the BeamWinHTTP loader [2]. This loader can be used to download and execute other malware strains, in particular information stealers [3]. 

Figure 3: Screenshot of Russian endpoint with link to incricinfo[.]com 
Figure 4: Cyber AI Analyst highlighting the unusual HTTP connectivity that occurred prior to the multiple suspicious file downloads

At the same time as the connections with the unusual user agents, the device was also seen downloading an executable file from the endpoint, ‘Yuuichirou-hanma[.]s3[.]pl-waw[.]scw[.]cloud’. Analysis of the file indicated that it may be used to deploy further malware and potentially unwanted programs (PUPs). BeamWinHTTP also causes installation of these PUPs which helps to load more nefarious programs and spread compromise. 

This behavior was then seen as the device downloaded 5 different executable files from the endpoint, ‘hakhaulogistics[.]com’. This domain is linked to a Vietnamese logistics company that Darktrace had marked as new within the environment; it is possible that this domain was compromised and being used to host malicious infrastructure. At the point of compromise, several of the downloads were labeled as malicious by popular OSINT [4]. Additionally, at least one of the files was explicitly linked to the RedLine Information Stealer.  

Shortly after, the device made connections to a known Tor relay node. Tor is commonly used as an avenue for C2 communication as it offers a way for attackers to anonymize and obfuscate their activity. It was at this point that the first Proactive Threat Notification (PTN) for this activity occurred. This ensured immediate follow-up investigation from Darktrace SOC and a timeline of events and impacted devices were issued to the customer’s security team directly. 

Figure 5: Cyber AI Analyst highlighting the unusual executable downloads as well as the subsequent Tor connections. The file poweroff[.]exe has been highlighted by several OSINT sources as being potentially malicious

By this point, Darktrace had identified a large volume of unusual outbound HTTP POSTs to a variety of endpoints that seemed to have no obvious function or service. Following these POST requests, the compromised device was seen initiating a long SSL connection to the domain, ‘www[.]qfhwji6fnpiad3gs[.]com’, which is likely to have be generated by an algorithm (DGA). Lastly, a little while after the SSL connections, the device was seen downloading another executable file from the Russian domain ‘test-hf[.]su’. Research on the file again suggested that it was associated with RedLine Stealer [5].  

Figure 6: AIA highlighting additional unusual HTTP connections that were linked with the numeric exe download

Dangers of Non-Compliance 

Whilst the RedLine compromise was a matter of customer concern, the gap in their security was not visibility but rather best practice. It is important to note that prior to these events, the device was commonly seen sending and receiving connections associated with torrenting. In the past it has been observed that RedLine Stealer masquerades as ‘cracked’ software (software that has had its copy protection removed) [6]. In this instance, the initial download of the false ‘SNMPc’ executable may have been proof of this behavior. 

This is a reminder that torrenting is also extremely popular as a peer-to-peer vector for transferring malicious files. Combined with the possibility of network throttling or unapproved VPN use, torrents are usually considered non-compliant within corporate settings. Whether the events here were kickstarted due to a user unwittingly downloading malicious software, or exposure to a malicious actor via BitTorrent use, both cases represent a user circumventing existing compliance controls or a lack of compliance control in general. It is important for organizations to make sure that their users are acting in ways that limit the company’s exposure to nefarious actors. Companies should routinely encourage proper cyber hygiene and implement access controls that block certain activities such as torrenting if threats like these are to be stopped in the future.  

Regardless of what users are doing, Darktrace is positioned to detect and take action on compliance breaches and activity resulting from lack of compliance. The variety of C2 domains used in this blog incident were too quick for most security tools to alert on or for human teams to triage. However, this was no problem for Cyber AI analyst, which was able to draw together aspects of the attack across the kill chain and save a significant amount of time for both the customer security team and Darktrace SOC analysts. If active, Darktrace RESPOND could have blocked activities like the initial BitTorrent connections and incoming download, but with the right preventative measures, it wouldn’t have to. Darktrace PREVENT works continuously to harden defenses and preempt attackers, closing any vulnerabilities before they can be exploited. This includes performing attack surface management, attack path modelling, and security awareness training. In this case, Darktrace PREVENT could have highlighted torrenting activity as part of a potentially harmful attack path and recommended the best actions to mitigate it.

‘No Prior Experience required’ 

In the past, only highly skilled attackers could create and use the tools needed to attack organizations. With Ransomware-as-a-Service (RaaS) proving highly profitable, however, it is no surprise that malware is also becoming a lucrative business. As SaaS can help legitimate companies with no development experience to use and maintain apps, MaaS can help attackers with little to no hacking experience compromise organizations and achieve their goals. RedLine Stealer is readily available, and not prohibitively expensive, meaning attacks can be carried out more frequently, and on a wider range of victims. The incident explored in this blog is proof of this, and a strong indication that security comes not only from strong visibility but also compliance and best practice too. With a powerful defensive tool like PREVENT, security teams can save time while feeling confident that they are keeping ahead of these aspects of security.

Thanks to Adam Stevens for his contributions to this blog.

Appendices

Darktrace Model Breaches

·      Anomalous Connection / Multiple HTTP POSTs to Rare Hostname 

·      Anomalous Connection / New User Agent to IP Without Hostname

·      Anomalous File / EXE from Rare External Location

·      Anomalous File / Multiple EXE from Rare External 

·      Anomalous File / Numeric Exe Download

·      Anomalous Server Activity / New User Agent from Internet Facing System

·      Compliance / SSH to Rare External Destination

·      Compromise / Anomalous File then Tor 

·      Compromise / Possible Tor Usage 

·      Device / Initial Breach Chain Compromise

·      Device / Long Agent Connection to New Endpoint

References

[1] https://blog.sonicwall.com/en-us/2021/12/the-rise-and-growth-of-malware-as-a-service/

[2] https://asec.ahnlab.com/en/33679/  

[3] https://asec.ahnlab.com/en/20930/

[4] https://www.virustotal.com/gui/file/acfc06b4bcda03ecf4f9dc9b27c510b58ae3a6a9baf1ee821fc624467944467b & https://www.virustotal.com/gui/file/dad6311f96df65f40d9599c84907bae98306f902b1489b03768294b7678a5e79 

[5] https://www.virustotal.com/gui/file/ff7574f9f1d15594e409bee206f5db6c76db7c90dda2ae4f241b77cd0c7b6bf6

[6] https://asec.ahnlab.com/en/30445/

NEWSLETTER

Vous aimez ça et en voulez plus ?

Stay up to date on the latest industry news and insights.
Vous pouvez vous désabonner à tout moment. Politique de confidentialité
DANS LE SOC
Darktrace sont des experts de classe mondiale en matière de renseignement sur les menaces, de chasse aux menaces et de réponse aux incidents. Ils fournissent une assistance SOC 24 heures sur 24 et 7 jours sur 7 à des milliers de clients Darktrace dans le monde entier. Inside the SOC est exclusivement rédigé par ces experts et fournit une analyse des cyberincidents et des tendances en matière de menaces, basée sur une expérience réelle sur le terrain.
AUTEUR
à propos de l'auteur
Steven Sosa
Analyst Team Lead
share this article
CAS D'UTILISATION
PLEINS FEUX SUR LES PRODUITS
Aucun élément trouvé.
Couverture de base
Aucun élément trouvé.

More in this series

Aucun élément trouvé.

Blog

A l'intérieur du SOC

Protecting Prospects: How Darktrace Detected an Account Hijack Within Days of Deployment

Default blog imageDefault blog image
28
Sep 2023

Cloud Migration Expanding the Attack Surface

Cloud migration is here to stay – accelerated by pandemic lockdowns, there has been an ongoing increase in the use of public cloud services, and Gartner has forecasted worldwide public cloud spending to grow around 20%, or by almost USD 600 billion [1], in 2023. With more and more organizations utilizing cloud services and moving their operations to the cloud, there has also been a corresponding shift in malicious activity targeting cloud-based software and services, including Microsoft 365, a prominent and oft-used Software-as-a-Service (SaaS).

With the adoption and implementation of more SaaS products, the overall attack surface of an organization increases – this gives malicious actors additional opportunities to exploit and compromise a network, necessitating proper controls to be in place. This increased attack surface can leave organization’s open to cyber risks like cloud misconfigurations, supply chain attacks and zero-day vulnerabilities [2]. In order to achieve full visibility over cloud activity and prevent SaaS compromise, it is paramount for security teams to deploy sophisticated security measures that are able to learn an organization’s SaaS environment and detect suspicious activity at the earliest stage.

Darktrace Immediately Detects Hijacked Account

In May 2023, Darktrace observed a chain of suspicious SaaS activity on the network of a customer who was about to begin their trial of Darktrace/Cloud™ and Darktrace/Email™. Despite being deployed on the network for less than a week, Darktrace DETECT™ recognized that the legitimate SaaS account, belonging to an executive at the organization, had been hijacked. Darktrace/Email was able to provide full visibility over inbound and outbound mail and identified that the compromised account was subsequently used to launch an internal spear-phishing campaign.

If Darktrace RESPOND™ were enabled in autonomous response mode at the time of this compromise, it would have been able to take swift preventative action to disrupt the account compromise and prevent the ensuing phishing attack.

Account Hijack Attack Overview

Unusual External Sources for SaaS Credentials

On May 9, 2023, Darktrace DETECT/Cloud detected the first in a series of anomalous activities performed by a Microsoft 365 user account that was indicative of compromise, namely a failed login from an external IP address located in Virginia.

Figure 1: The failed login notice, as seen in Darktrace DETECT/Cloud. The notice includes additional context about the failed login attempt to the SaaS account.

Just a few minutes later, Darktrace observed the same user credential being used to successfully login from the same unusual IP address, with multi-factor authentication (MFA) requirements satisfied.

Figure 2: The “Unusual External Source for SaaS Credential Use” model breach summary, showing the successful login to the SaaS user account (with MFA), from the rare external IP address.

A few hours after this, the user credential was once again used to login from a different city in the state of Virginia, with MFA requirements successfully met again. Around the time of this activity, the SaaS user account was also observed previewing various business-related files hosted on Microsoft SharePoint, behavior that, taken in isolation, did not appear to be out of the ordinary and could have represented legitimate activity.

The following day, May 10, however, there were additional login attempts observed from two different states within the US, namely Texas and Florida. Darktrace understood that this activity was extremely suspicious, as it was highly improbable that the legitimate user would be able to travel over 2,500 miles in such a short period of time. Both login attempts were successful and passed MFA requirements, suggesting that the malicious actor was employing techniques to bypass MFA. Such MFA bypass techniques could include inserting malicious infrastructure between the user and the application and intercepting user credentials and tokens, or by compromising browser cookies to bypass authentication controls [3]. There have also been high-profile cases in the recent years of legitimate users mistakenly (and perhaps even instinctively) accepting MFA prompts on their token or mobile device, believing it to be a legitimate process despite not having performed the login themselves.

New Email Rule

On the evening of May 10, following the successful logins from multiple US states, Darktrace observed the Microsoft 365 user creating a new inbox rule, named “.’, in Microsoft Outlook from an IP located in Florida. Threat actors are often observed naming new email rules with single characters, likely to evade detection, but also for the sake of expediency so as to not expend any additional time creating meaningful labels.

In this case the newly created email rules included several suspicious properties, including ‘AlwaysDeleteOutlookRulesBlob’, ‘StopProcessingRules’ and “MoveToFolder”.

Firstly, ‘AlwaysDeleteOutlookRulesBlob’ suppresses or hides warning messages that typically appear if modifications to email rules are made [4]. In this case, it is likely the malicious actor was attempting to implement this property to obfuscate the creation of new email rules.

The ‘StopProcessingRules’ rule meant that any subsequent email rules created by the legitimate user would be overridden by the email rule created by the malicious actor [5]. Finally, the implementation of “MoveToFolder” would allow the malicious actor to automatically move all outgoing emails from the “Sent” folder to the “Deleted Items” folder, for example, further obfuscating their malicious activities [6]. The utilization of these email rule properties is frequently observed during account hijackings as it allows attackers to delete and/or forward key emails, delete evidence of exploitation and launch phishing campaigns [7].

In this incident, the new email rule would likely have enabled the malicious actor to evade the detection of traditional security measures and achieve greater persistence using the Microsoft 365 account.

Figure 3: Screenshot of the “New Email Rule” model breach. The Office365 properties associated with the newly modified Microsoft Outlook inbox rule, “.”, are highlighted in red.

Account Update

A few hours after the creation of the new email rule, Darktrace observed the threat actor successfully changing the Microsoft 365 user’s account password, this time from a new IP address in Texas. As a result of this action, the attacker would have locked out the legitimate user, effectively gaining full access over the SaaS account.

Figure 4: The model breach event log showing the user password and token change updates performed by the compromised SaaS account.

Phishing Emails

The compromised SaaS account was then observed sending a high volume of suspicious emails to both internal and external email addresses. Darktrace was able to identify that the emails attempting to impersonate the legitimate service DocuSign and contained a malicious link prompting users to click on the text “Review Document”. Upon clicking this link, users would be redirected to a site hosted on Adobe Express, namely hxxps://express.adobe[.]com/page/A9ZKVObdXhN4p/.

Adobe Express is a free service that allows users to create web pages which can be hosted and shared publicly; it is likely that the threat actor here leveraged the service to use in their phishing campaign. When clicked, such links could result in a device unwittingly downloading malware hosted on the site, or direct unsuspecting users to a spoofed login page attempting to harvest user credentials by imitating legitimate companies like Microsoft.

Figure 5: Screenshot of the phishing email, containing a malicious link hidden behind the “Review Document” text. The embedded link directs to a now-defunct page that was hosted on Adobe Express.

The malicious site hosted on Adobe Express was subsequently taken down by Adobe, possibly in response to user reports of maliciousness. Unfortunately though, platforms like this that offer free webhosting services can easily and repeatedly be abused by malicious actors. Simply by creating new pages hosted on different IP addresses, actors are able to continue to carry out such phishing attacks against unsuspecting users.

In addition to the suspicious SaaS and email activity that took place between May 9 and May 10, Darktrace/Email also detected the compromised account sending and receiving suspicious emails starting on May 4, just two days after Darktrace’s initial deployment on the customer’s environment. It is probable that the SaaS account was compromised around this time, or even prior to Darktrace’s deployment on May 2, likely via a phishing and credential harvesting campaign similar to the one detailed above.

Figure 6: Event logs of the compromised SaaS user, here seen breaching several Darktrace/Email model breaches on 4th May.

Darktrace Coverage

As the customer was soon to begin their trial period, Darktrace RESPOND was set in “human confirmation” mode, meaning that any preventative RESPOND actions required manual application by the customer’s security team.

If Darktrace RESPOND had been enabled in autonomous response mode during this incident, it would have taken swift mitigative action by logging the suspicious user out of the SaaS account and disabling the account for a defined period of time, in doing so disrupting the attack at the earliest possible stage and giving the customer the necessary time to perform remediation steps.  As it was, however, these RESPOND actions were suggested to the customer’s security team for them to manually apply.

Figure 7: Example of Darktrace RESPOND notices, in response to the anomalous user activity.

Nevertheless, with Darktrace DETECT/Cloud in place, visibility over the anomalous cloud-based activities was significantly increased, enabling the swift identification of the chain of suspicious activities involved in this compromise.

In this case, the prospective customer reached out to Darktrace directly through the Ask the Expert (ATE) service. Darktrace’s expert analyst team then conducted a timely and comprehensive investigation into the suspicious activity surrounding this SaaS compromise, and shared these findings with the customer’s security team.

Conclusion

Ultimately, this example of SaaS account compromise highlights Darktrace’s unique ability to learn an organization’s digital environment and recognize activity that is deemed to be unexpected, within a matter of days.

Due to the lack of obvious or known indicators of compromise (IoCs) associated with the malicious activity in this incident, this account hijack would likely have gone unnoticed by traditional security tools that rely on a rules and signatures-based approach to threat detection. However, Darktrace’s Self-Learning AI enables it to detect the subtle deviations in a device’s behavior that could be indicative of an ongoing compromise.

Despite being newly deployed on a prospective customer’s network, Darktrace DETECT was able to identify unusual login attempts from geographically improbable locations, suspicious email rule updates, password changes, as well as the subsequent mounting of a phishing campaign, all before the customer’s trial of Darktrace had even begun.

When enabled in autonomous response mode, Darktrace RESPOND would be able to take swift preventative action against such activity as soon as it is detected, effectively shutting down the compromise and mitigating any subsequent phishing attacks.

With the full deployment of Darktrace’s suite of products, including Darktrace/Cloud and Darktrace/Email, customers can rest assured their critical data and systems are protected, even in the case of hybrid and multi-cloud environments.

Credit: Samuel Wee, Senior Analyst Consultant & Model Developer

Appendices

References

[1] https://www.gartner.com/en/newsroom/press-releases/2022-10-31-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-reach-nearly-600-billion-in-2023

[2] https://www.upguard.com/blog/saas-security-risks

[3] https://www.microsoft.com/en-us/security/blog/2022/11/16/token-tactics-how-to-prevent-detect-and-respond-to-cloud-token-theft/

[4] https://learn.microsoft.com/en-us/powershell/module/exchange/disable-inboxrule?view=exchange-ps

[5] https://learn.microsoft.com/en-us/dotnet/api/microsoft.exchange.webservices.data.ruleactions.stopprocessingrules?view=exchange-ews-api

[6] https://learn.microsoft.com/en-us/dotnet/api/microsoft.exchange.webservices.data.ruleactions.movetofolder?view=exchange-ews-api

[7] https://blog.knowbe4.com/check-your-email-rules-for-maliciousness

Darktrace Model Detections

Darktrace DETECT/Cloud and RESPOND Models Breached:

SaaS / Access / Unusual External Source for SaaS Credential Use

SaaS / Unusual Activity / Multiple Unusual External Sources for SaaS Credential

Antigena / SaaS / Antigena Unusual Activity Block (RESPOND Model)

SaaS / Compliance / New Email Rule

Antigena / SaaS / Antigena Significant Compliance Activity Block

SaaS / Compromise / Unusual Login and New Email Rule (Enhanced Monitoring Model)

Antigena / SaaS / Antigena Suspicious SaaS Activity Block (RESPOND Model)

SaaS / Compromise / SaaS Anomaly Following Anomalous Login (Enhanced Monitoring Model)

SaaS / Compromise / Unusual Login and Account Update

Antigena / SaaS / Antigena Suspicious SaaS Activity Block (RESPOND Model)

IoC – Type – Description & Confidence

hxxps://express.adobe[.]com/page/A9ZKVObdXhN4p/ - Domain – Probable Phishing Page (Now Defunct)

37.19.221[.]142 – IP Address – Unusual Login Source

35.174.4[.]92 – IP Address – Unusual Login Source

MITRE ATT&CK Mapping

Tactic - Techniques

INITIAL ACCESS, PRIVILEGE ESCALATION, DEFENSE EVASION, PERSISTENCE

T1078.004 – Cloud Accounts

DISCOVERY

T1538 – Cloud Service Dashboards

CREDENTIAL ACCESS

T1539 – Steal Web Session Cookie

RESOURCE DEVELOPMENT

T1586 – Compromise Accounts

PERSISTENCE

T1137.005 – Outlook Rules

Probability yardstick used to communicate the probability that statements or explanations given are correct.
Continue reading
About the author
Min Kim
Cyber Security Analyst

Blog

Email

Darktrace/Email in Action: Why AI-Driven Email Security is the Best Defense Against Sustained Phishing Campaigns

Photo of man checking emails on laptopDefault blog imageDefault blog image
26
Sep 2023

Stopping the bad while allowing the good

Since its inception, email has been regarded as one of the most important tools for businesses, revolutionizing communication and allowing global teams to become even more connected. But besides organizations heavily relying on email for their daily operations, threat actors have also recognized that the inbox is one of the easiest ways to establish an initial foothold on the network.

Today, not only are phishing campaigns and social engineering attacks becoming more prevalent, but the level of sophistication of these attacks are also increasing with the help of generative AI tools that allow for the creation of hyper-realistic emails with minimal errors, effectively lowering the barrier to entry for threat actors. These diverse and stealthy types of attacks evade traditional email security tools based on rules and signatures, because they are less likely to contain the low-sophistication markers of a typical phishing attack.  

In a situation where the sky is the limit for attackers and security teams are lean, how can teams equip themselves to tackle these threats? How can they accurately detect increasingly realistic malicious emails and neutralize these threats before it is too late? And importantly, how can email security block these threats while allowing legitimate emails to flow freely?

Instead of relying on past attack data, Darktrace’s Self-Learning AI detects the slightest deviation from a user’s pattern of life and responds autonomously to contain potential threats, stopping novel attacks in their tracks before damage is caused. It doesn’t define ‘good’ and ‘bad’ like traditional email tools, rather it understands each user and what is normal for them – and what’s not.

This blog outlines how Darktrace/Email™ used its understanding of ‘normal’ to accurately detect and respond to a sustained phishing campaign targeting a real-life company.

Responding to a sustained phishing attack

Over the course of 24 hours, Darktrace detected multiple emails containing different subjects, all from different senders to different recipients in one organization. These emails were sent from different IP addresses, but all came from the same autonomous system number (ASN).

Figure 1: The sender freemail addresses and subject lines all followed a certain format. The subject lines followed the format of “<First name> <Last name>”, possibly to induce curiosity. The senders were all freemail accounts and contained first names, last names and some numbers, showing the attempts to make these email addresses appear legitimate.

The emails themselves had many suspicious indicators. All senders had no prior association with the recipient, and the emails generated a high general inducement score. This score is generated by structural and non-specific content analysis of the email – a high score indicates that the email is trying to induce the recipient into taking a particular action, which may lead to account compromise.

Additionally, each email contained a visually prominent link to a file storage service, hidden behind a shortened bit.ly link. The similarities across all these emails pointed to a sustained campaign targeting the organization by a single threat actor.

Figure 2: One of the emails is shown above. Like all the other emails, it contained a highly suspicious and shortened link.
Figure 3: In another one of the emails, the link observed had similar characteristics. But this email stands out from the rest. The sender's name seems to be randomly set – the 3 alphabets are close to each other on the keyboard.

With all these suspicious indicators, many models were breached. This drove up the anomaly score, causing Darktrace/Email to hold all suspicious emails from the recipients’ inboxes, safeguarding the recipients from potential account compromise and disallowing the threats from taking hold in the network.

Imagining a phishing attack without Darktrace/Email

So what could have happened if Darktrace had not withheld these emails, and the recipients had clicked on the links? File storage sites have a wide variety of uses that allow attackers to be creative in their attack strategy. If the user had clicked on the shortened link, the possible consequences are numerous. The link could have led to a login page for unsuspecting victims to input their credentials, or it could have hosted malware that would automatically download if the link was clicked. With the compromised credentials, threat actors could even bypass MFA, change email rules, or gain privileged access to a network. The downloaded malware might also be a keylogger, leading to cryptojacking, or could open a back door for threat actors to return to at a later time.

Figure 4: Darktrace/Email highlights suspicious link characteristics and provides an option to preview the pages.
Figure 5: At the point of writing, both links could not be reached. This could be because they were one-time unique links created specifically for the user, and can no longer be accessed once the campaign has ceased.

The limits of traditional email security tools

Secure email gateways (SEGs) and static AI security tools may have found it challenging to detect this phishing campaign as malicious. While Darktrace was able to correlate these emails to determine that a sustained phishing campaign was taking place, the pattern among these emails is far too generic for specific rules as set in traditional security tools. If we take the characteristic of the freemail account sender as an example, setting a rule to block all emails from freemail accounts may lead to more legitimate emails being withheld, since these addresses have a variety of uses.

With these factors in mind, these emails could have easily slipped through traditional security filters and led to a devastating impact on the organization.

Conclusion

As threat actors step up their attacks in sophistication, prioritizing email security is more crucial than ever to preserving a safe digital environment. In response to these challenges, Darktrace/Email offers a set-and-forget solution that continuously learns and adapts to changes in the organization.  

Through an evolving understanding of every environment in which it is deployed, its threat response becomes increasingly precise in neutralizing only the bad, while allowing the good – delivering email security that doesn’t come at the expense of business growth.

Continue reading
About the author

Bonne nouvelle pour votre entreprise.
Mauvaise nouvelle pour les méchants.

Commencez votre essai gratuit

Commencez votre essai gratuit

Livraison flexible
Cloud-based deployment.
Installation rapide
Une heure seulement pour la mise en place - et encore moins pour un essai de sécurité du courrier électronique.
Choisissez votre voyage
Essayez Self-Learning AI là où vous en avez le plus besoin - y compris dans le cloud, sur le réseau ou par courriel.
Aucun engagement
Accès complet à Darktrace Threat Visualizer et à trois rapports sur mesure sur les menaces, sans obligation d'achat.
For more information, please see our Privacy Notice.
Thanks, your request has been received
A member of our team will be in touch with you shortly.
YOU MAY FIND INTERESTING
Oups ! Un problème est survenu lors de la soumission du formulaire.

Obtenez une démo

Livraison flexible
Vous pouvez l'installer virtuellement ou avec du matériel.
Installation rapide
Une heure seulement pour la mise en place - et encore moins pour un essai de sécurité du courrier électronique.
Choisissez votre voyage
Essayez Self-Learning AI là où vous en avez le plus besoin - y compris dans le cloud, sur le réseau ou par courriel.
Aucun engagement
Accès complet à Darktrace Threat Visualizer et à trois rapports sur mesure sur les menaces, sans obligation d'achat.
Merci ! Votre soumission a été reçue !
Oups ! Un problème est survenu lors de la soumission du formulaire.