Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product
Share
30
Sep 2020
At the heart of any email attack is the goal of moving the recipient to engage: whether that’s clicking a link, filling in a form, or opening an attachment. And with over nine in ten cyber-attacks starting with an email, this attack vector continues to prove successful, despite organizations’ best efforts to safeguard their workforce by deploying email gateways and training employees to spot phishing attempts.
Email attackers have seen such success because they understand their victims. They know that, ultimately, human beings are creatures of habit, prone to error, and susceptible to their emotions. Years of experience has allowed attackers to fine tune their emails making them more plausible and more provocative. Automated tools are now increasing the speed and scale at which criminals can buy new domains and send emails en masse. This makes it even easier to ‘A/B test’ attack methods: abandoning those that don’t see high success rates and capitalizing on those that do.
We can classify phishing attempts into five broad categories, each aiming to trigger a different emotional reaction and elicit a response.
Fear: “We have detected a virus on your device, log in to your McAfee account.”
Curiosity: “You have 3 new voicemails, click here.”
Generosity: “COVID-19 has greatly impacted homelessness in your area. Donate now.”
Greed: “Only 23 iPhones left to give away, act now!”
Concern: “Coronavirus outbreak in your area: Find out more.”
It’s worth noting that today’s increasingly dynamic workforces are more susceptible to these techniques, isolated in their homes and hungry for new information.
Turning to tech
As email attacks continue to trick employees and find success, many organizations have realized that the built-in security tools that come with their email provider aren’t enough to defend against today’s attacks. Additional email gateways are successful in catching spam and other low-hanging fruit, but fail to stop advanced attacks – particularly those leveraging novel malware, new domains, or advanced techniques. These advanced attacks are also the most damaging to businesses.
This failure is due to an inherent weakness in the legacy approach of traditional security tools. They compare inbound mail against lists of ‘known bad’ IPs, domains, and file hashes. Senders and recipients are treated simply as data points – ignoring the nuances of the human beings behind the keyboards.
Looking at these metrics in isolation fails to take into account the full context that can only be gained by understanding the people behind email interactions: where they usually log in from, who they communicate with, how they write, and what types of attachments they send and receive. It is this rich, personal context that reveals seemingly benign emails to be unmistakably malicious, especially when other data fails to reveal the danger.
Misunderstanding the human
Frustrated with the ineffectiveness of traditional tools, many organizations think that the solution is to minimize the chances that employees engage with malicious emails through comprehensive employee training. Indeed, companies often attempt to train their employees to spot malicious emails to compensate for their technology’s lack of detection.
Considering humans to be the last line of defense is dangerous, and this approach overlooks the fact that today’s sophisticated fakes can appear indistinguishable to legitimate mails. It's only when you really break an email down beyond the text, beyond the personal name, beyond the domain and email address (in the case of compromised trusted senders), that you can decipher between real and fake.
Large data breaches of recent years have given attackers greater access than ever to corporate emails and stolen passwords, and so supply chain attacks are becoming increasingly common. When attackers take over a trusted account or an existing email thread, how can an employee be expected to notice a subtle change in wording or the different type of attached document? However rigorous the internal training program and regardless of how vigilant employees are, we are now at the point where humans cannot spot these very subtle indicators. And one click is all it takes.
Understanding the human
Email security, for a long time, remains an unsolved piece of the complex cyber security puzzle. The failure of both traditional tools and employee training has prompted organizations to take a radically different approach. Thousands of businesses across the world, in both the public and private sector, use artificial intelligence that understands the human behind the keyboard and forms a nuanced and continually evolving understanding of email interactions across the business.
By learning what a human does, who they interact with, how they write, and the substance of a typical conversation between any two or more people, AI begins to understand the habits of employees, and over time it builds a comprehensive picture of their normal patterns of behavior. Most importantly, AI is self-learning, continuously revising its understanding of ‘normal’ so that when employees’ habits change, so does the AI’s understanding.
This enables the technology to detect behavioral anomalies that fall outside of an employee’s ‘pattern of life’, or the pattern of life for the organization as a whole.
This fundamentally new approach to email security enables the system to recognize the subtle indicators of a threat and make accurate decisions to stop or allow emails to pass through, even if a threat has never been seen before.
Sitting behind email gateways, this self-learning technology has extremely high catch rates. It has caught countless malicious emails that other tools missed, from impersonations of senior financial personnel to ‘fearware’ that played on the workforce’s uncertainties at a time of pandemic.
Attackers are continuing to innovate, and automation has led to a new wave of email threats. 88% of security leaders now believe that cyber-attacks powered by offensive AI are inevitable. The email threat landscape is rapidly changing, and we can expect to receive more hoax emails that are more convincing. Now is a crucial moment for organizations to prepare for this eventuality by adopting AI in their email defenses.
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Tracking CVE-2025-31324: Darktrace’s detection of SAP Netweaver exploitation before and after disclosure
Introduction: Exploiting SAP platforms
Global enterprises depend extensively on SAP platforms, such as SAP NetWeaver and Visual Composer, to run critical business processes worldwide. These systems; however, are increasingly appealing targets for well-resourced adversaries:
In March 2025, CISA issued an alert confirming active exploitation of a 2017 SAP NetWeaver vulnerability (CVE‑2017‑12637), enabling attackers to perform directory traversal and exfiltrate sensitive files, including credentials, from internet-facing systems
CVE-2025-31324 affects SAP’s NetWeaver Visual Composer, a web-based software modeling tool. SAP NetWeaver is an application server and development platform that runs and connects SAP and non-SAP applications across different technologies [2]. It is commonly used by process specialists to develop application components without coding in government agencies, large enterprises, and by critical infrastructure operators [4].
CVE-2025-31324 affects SAP’s Netweaver Visual Composer Framework 7.1x (all SPS) and above [4]. The vulnerability in a Java Servlet (/irj/servlet_jsp) would enable an unauthorized actor to upload arbitrary files to the /developmentserver/metadatauploader endpoint, potentially resulting in remote code execution (RCE) and full system compromise [3]. The issue stems from an improper authentication and authorization check in the SAP NetWeaver Application Server Java systems [4].
What is the severity rating of CVE-2025-31324?
The vulnerability, first disclosed on April 24, 2025, carries the highest severity rating (CVSS v3 score: 10.0) and could allow remote attackers to upload malicious files without requiring authentication [1][5]. Although SAP released a workaround on April 8, many organizations are hesitant to take their business-critical SAP NetWeaver systems offline, leaving them exposed to potential exploitation [2].
How is CVE-2025-31324 exploited?
The vulnerability is exploitable by sending specifically crafted GET, POST, or HEAD HTTP requests to the /developmentserver/metadatauploader URL using either HTTP or HTTPS. Attackers have been seen uploading malicious files (.jsp, .java, or .class files to paths containing “\irj\servlet_jsp\irj\”), most of them being web shells, to publicly accessible SAP NetWeaver systems.
External researchers observed reconnaissance activity targeting this vulnerability in late January 2025, followed by a surge in exploitation attempts in February. The first confirmed compromise was reported in March [4].
Multiple threat actors have reportedly targeted the vulnerability, including Chinese Advanced Persistent Threats (APTs) groups Chaya_004 [7], UNC5221, UNC5174, and CL-STA-0048 [8], as well as ransomware groups like RansomEXX, also known as Storm-2460, BianLian [4] or Qilin [6] (the latter two share the same indicators of compromise (IoCs)).
Following the initial workaround published on April 8, SAP released a security update addressing CVE-2025-31324 and subsequently issued a patch on May 13 (Security Note 3604119) to resolve the root cause of the vulnerability [4].
Darktrace’s coverage of CVE-2025-31324 exploitation
Darktrace has observed activity indicative of threat actors exploiting CVE-2025-31324, including one instance detected before the vulnerability was publicly disclosed.
In April 2025, the Darktrace Threat Research team investigated activity related to the CVE-2025-31324 on SAP devices and identified two cases suggesting active exploitation of the vulnerability. One case was detected prior to the public disclosure of the vulnerability, and the other just two days after it was published.
Early detection of CVE 2025-31324 by Darktrace
Figure 1: Timeline of events for an internet-facing system, believed to be a SAP device, exhibiting activity indicative of CVE-2025-31324 exploitation.
On April 18, six days prior to the public disclosure of CVE-2025-31324, Darktrace began to detect unusual activity on a device belonging to a logistics organization in the Europe, the Middle East and Africa (EMEA) region. Multiple IoCs observed during this incident have since been linked via OSINT to the exploitation of CVE-2025-31324. Notably, however, this reporting was not available at the time of detection, highlighting Darktrace’s ability to detect threats agnostically, without relying on threat intelligence.
The device was observed making domain name resolution request for the Out-of-Band Application Security Testing (OAST) domain cvvr9gl9namk9u955tsgaxy3upyezhnm6.oast[.]online. OAST is often used by security teams to test if exploitable vulnerabilities exist in a web application but can similarly be used by threat actors for the same purpose [9].
Four days later, on April 22, Darktrace observed the same device, an internet-facing system believed to be a SAP device, downloading multiple executable (.exe) files from several Amazon Simple Storage Service (S3). Darktrace’s Threat Research team later found these files to be associated with the KrustyLoader malware [23][24][25].
KrustyLoader is known to be associated with the Chinese threat actor UNC5221, also known as UTA0178, which has been reported to aggressively target devices exposed to the internet [10] [14] [15]. It is an initial-stage malware which downloads and launches a second-stage payload – Sliver C2. Sliver is a similar tool to Cobalt Strike (an open-source post-exploitation toolkit). It is used for command-and-control (C2) connections [11][12]13]. After its successful download, KrustyLoader deletes itself to evade detection. It has been reported that multiple Chinese APT groups have deployed KrustyLoader on SAP Netweaver systems post-compromise [8].
The actors behind KrustyLoader have also been associated with the exploitation of zero-day vulnerabilities in other enterprise systems, including Ivanti devices [12]. Notably, in this case, one of the Amazon S3 domains observed (abode-dashboard-media.s3.ap-south-1.amazonaws[.]com ) had previously been investigated by Darktrace’s Threat Research team as part of their investigation into Ivanti Connect Secure (CS) and Policy Secure (PS) appliances.
In addition to the download of known malicious files, Darktrace also detected new IoCs, including several executable files that could not be attributed to any known malware families or previous attacks, and for which no corresponding OSINT reporting was available.
Post-CVE publication detection
Exploit Validation
Between April 27 and 29, Darktrace observed unusual activity from an SAP device on the network of a manufacturing customer in EMEA.
Figure 2: Darktrace / NETWORK’s detection of an SAP device performing a large volume of suspicious activity between April 27 and April 29.
The device was observed making DNS requests for OAST domains (e.g. aaaaaaaa.d06qqn7pu5a6u25tv9q08p5xhbjzw33ge.oast[.]online and aaaaaaaaaaa.d07j2htekalm3139uk2gowmxuhapkijtp.oast[.]pro), suggesting that a threat actor was testing for exploit validation [9].
Figure 3: Darktrace / NETWORK’s detection of a SAP device making suspicious domain name resolution requests for multiple OAST domains.
Privilege escalation tool download attempt
One day later, Darktrace observed the same device attempting to download an executable file from hxxp://23.95.123[.]5:666/xmrigCCall/s.exe (SHA-1 file hash: e007edd4688c5f94a714fee036590a11684d6a3a).
Darktrace / NETWORK identified the user agents Microsoft-CryptoAPI/10.0 and CertUtil URL Agent during the connections to 23.95.123[.]5. The connections were made over port 666, which is not typically used for HTTP connections.
Multiple open-source intelligence (OSINT) vendors have identified the executable file as either JuicyPotato or SweetPotato, both Windows privilege escalation tools[16][17][18][19]. The file hash and the unusual external endpoint have been associated with the Chinese APT group Gelsemium in the past, however, many threat actors are known to leverage this tool in their attacks [20] [21].
Figure 4: Darktrace’s Cyber AI Analyst’s detection of a SAP device downloading a suspicious executable file from hxxp://23.95.123[.]5:666/xmrigCCall/s.exe on April 28, 2025.
Darktrace deemed this activity highly suspicious and triggered an Enhanced Monitoring model alert, a high-priority security model designed to detect activity likely indicative of compromise. As the customer was subscribed to the Managed Threat Detection service, Darktrace’s Security Operations Centre (SOC) promptly investigated the alert and notified the customer for swift remediation. Additionally, Darktrace’s Autonomous Response capability automatically blocked connections to the suspicious IP, 23.95.123[.]5, effectively containing the compromise in its early stages.
Figure 5: Actions taken by Darktrace’s Autonomous Response to block connections to the suspicious external endpoint 23.95.123[.]5. This event log shows that the connections to 23.95.123[.]5 were made over a rare destination port for the HTTP protocol and that new user agents were used during the connections.
Conclusion
The exploitation of CVE-2025-31324 to compromise SAP NetWeaver systems highlights the persistent threat posed by vulnerabilities in public-facing assets. In this case, threat actors leveraged the flaw to gain an initial foothold, followed by attempts to deploy malware linked to groups affiliated with China [8][20].
Crucially, Darktrace demonstrated its ability to detect and respond to emerging threats even before they are publicly disclosed. Six days prior to the public disclosure of CVE-2025-31324, Darktrace detected unusual activity on a device believed to be a SAP system, which ultimately represented an early detection of the CVE. This detection was made possible through Darktrace’s behavioral analysis and anomaly detection, allowing it to recognize unexpected deviations in device behavior without relying on signatures, rules or known IoCs. Combined with its Autonomous Response capability, this allowed for immediate containment of suspicious activity, giving security teams valuable time to investigate and mitigate the threat.
Credit to Signe Zaharka (Principal Cyber Analyst), Emily Megan Lim, (Senior Cyber Analyst) and Ryan Traill (Analyst Content Lead)
Appendices
List of IoCs
23.95.123[.]5:666/xmrigCCall/s.exe - URL- JuicyPotato/SweetPotato - high confidence
29274ca90e6dcf5ae4762739fcbadf01- MD5 file hash - JuicyPotato/SweetPotato - high confidence
Modernising UK Cyber Regulation: Implications of the Cyber Security and Resilience Bill
The need for security and continued cyber resilience
The UK government has made national security a key priority, and the new Cyber Security and Resilience Bill (CSRB) is a direct reflection of that focus. In introducing the Bill, Secretary of State for Science, Innovation and Technology, Peter Kyle, recognised that the UK is “desperately exposed” to cyber threats—from criminal groups to hostile nation-states that are increasingly targeting the UK's digital systems and critical infrastructure[1].
Context and timeline for the new legislation
First announced during the King’s Speech of July 2024, and elaborated in a Department for Science, Innovation and Technology (DSIT) policy statement published in April 2025, the CSRB is expected to be introduced in Parliament during the 2025-26 legislative session.
For now, organisations in the UK remain subject to the 2018 Network and Information Systems (NIS) Regulations – an EU-derived law which was drafted before today’s increasing digitisation of critical services, rise in cloud adoption and emergence of AI-powered threats.
Why modernisation is critical
Without modernisation, the Government believes UK’s infrastructure and economy risks falling behind international peers. The EU, which revised its cybersecurity regulation under the NIS2 Directive, already imposes stricter requirements on a broader set of sectors.
The urgency of the Bill is also underscored by recent high-impact incidents, including the Synnovis attack which targeted the National Health Service (NHS) suppliers and disrupted thousands of patient appointments and procedures[2]. The Government has argued that such events highlight a systemic failure to keep pace with a rapidly evolving threat landscape[3].
What the Bill aims to achieve
This Bill represents a decisive shift. According to the Government, it will modernise and future‑proof the UK’s cyber laws, extending oversight to areas where risk has grown but regulation has not kept pace[4]. While the legislation builds on previous consultations and draws lessons from international frameworks like the EU’s NIS2 directive, it also aims to tailor solutions to the UK’s unique threat environment.
Importantly, the Government is framing cybersecurity not as a barrier to growth, but as a foundation for it. The policy statement emphasises that strong digital resilience will create the stability businesses need to thrive, innovate, and invest[5]. Therefore, the goals of the Bill will not only be to enhance security but also act as an enabler to innovation and economic growth.
Recognition that AI changes cyber threats
The CSRB policy statement recognises that AI is fundamentally reshaping the threat landscape, with adversaries now leveraging AI and commercial cyber tools to exploit vulnerabilities in critical infrastructure and supply chains. Indeed, the NCSC has recently assessed that AI will almost certainly lead to “an increase in the frequency and intensity of cyber threats”[6]. Accordingly, the policy statement insists that the UK’s regulatory framework “must keep pace and provide flexibility to respond to future threats as and when they emerge”[7].
To address the threat, the Bill signals new obligations for MSPs and data centres, timely incident reporting and dynamic guidance that can be refreshed without fresh primary legislation, making it essential for firms to follow best practices.
What might change in day-to-day practice?
New organisations in scope of regulation
Under the existing Network and Information Systems (NIS) Regulations[8], the UK already supervises operators in five critical sectors—energy, transport, drinking water, health (Operators of Essential Services, OES) and digital infrastructure (Relevant Digital Service Providers, RDSPs).
The Cyber Security and Resilience Bill retains this foundation and adds Managed Service Providers (MSPs) and data centres to the scope of regulation to “better recognise the increasing reliance on digital services and the vulnerabilities posed by supply chains”[9]. It also grants the Secretary of State for Science, Innovation and Technology the power to add new sectors or sub‑sectors via secondary legislation, following consultation with Parliament and industry.
Managed service providers (MSPs)
MSPs occupy a central position within the UK’s enterprise information‑technology infrastructure. Because they remotely run or monitor clients’ systems, networks and data, they hold privileged, often continuous access to multiple environments. This foothold makes them an attractive target for malicious actors.
The Bill aims to bring MSPs in scope of regulation by making them subject to the same duties as those placed on firms that provide digital services under the 2018 NIS Regulations. By doing so, the Bill seeks to raise baseline security across thousands of customer environments and to provide regulators with better visibility of supply‑chain risk.
The proposed definition for MSPs is a service which:
Is provided to another organisation
Relies on the use of network and information systems to deliver the service
Relates to ongoing management support, active administration and/or monitoring of AI systems, IT infrastructure, applications, and/or IT networks, including for the purpose of activities relating to cyber security.
Involves a network connection and/or access to the customer’s network and information systems.
Data centres
Building on the September 2024 designation of data centres as critical national infrastructure, the CSRB will fold data infrastructure into the NIS-style regime by naming it an “relevant sector" and data centres as “essential service”[10].
About 182 colocation facilities run by 64 operators will therefore come under statutory duties to notify the regulator, maintain proportionate CAF-aligned controls and report significant incidents, regardless of who owns them or what workloads they host.
New requirements for regulated organisations
Incident reporting processes
There could be stricter timelines or broader definitions of what counts as a reportable incident. This might nudge organisations to formalise detection, triage, and escalation procedures.
The Government is proposing to introduce a new two-stage incident reporting process. This would include an initial notification which would be submitted within 24 hours of becoming aware of a significant incident, followed by a full incident report which should be submitted within 72 hours of the same.
Supply chain assurance requirements
Supply chains for the UK's most critical services are becoming increasingly complex and present new and serious vulnerabilities for cyber-attacks. The recent Synnovis ransomware attacks on the NHS[11] exemplify the danger posed by attacks against the supply chains of important services and organisations. This is concerning when reflecting on the latest Cyber Security Breaches survey conducted by DSIT, which highlights that fewer than 25% of large businesses review their supply chain risks[12].
Despite these risks, the UK’s legacy cybersecurity regulatory regime does not explicitly cover supply chain risk management. The UK instead relies on supporting and non-statutory guidance to close this gap, such as the NCSC’s Cyber Assessment Framework (CAF)[13].
The CSRB policy statement acts on this regulatory shortcoming and recognises that “a single supplier’s disruption can have far-reaching impacts on the delivery of essential or digital services”[14].
To address this, the Bill would make in-scope organisations (OES and RDPS) directly accountable for the cybersecurity of their supply chains. Secondary legislation would spell out these duties in detail, ensuring that OES and RDSPs systematically assess and mitigate third-party cyber risks.
Updated and strengthened security requirements
By placing the CAF into a firmer footing and backing it with a statutory Code of Practice, the Government is setting clearer expectations about government expectations on technical standards and methods organisations will need to follow to prove their resilience.
How Darktrace can help support affected organizations
Demonstrate resilience
Darktrace’s Self-Learning AITM continuously monitors your digital estate across cloud, network, OT, email, and endpoint to detect, investigate, and autonomously respond to emerging threats in real time. This persistent visibility and defense posture helps organizations demonstrate cyber resilience to regulators with confidence.
Streamline incident reporting and compliance
Darktrace surfaces clear alerts and automated investigation reports, complete with timeline views and root cause analysis. These insights reduce the time and complexity of regulatory incident reporting and support internal compliance workflows with auditable, AI-generated evidence.
Improve supply chain visibility
With full visibility across connected systems and third-party activity, Darktrace detects early indicators of lateral movement, account compromise, and unusual behavior stemming from vendor or partner access, reducing the risk of supply chain-originated cyber-attacks.
Ensure MSPs can meet new standards
For managed service providers, Darktrace offers native multi-tenant support and autonomous threat response that can be embedded directly into customer environments. This ensures consistent, scalable security standards across clients—helping MSPs address increasing regulatory obligations.