Blog
OT
Leadership éclairé
Protéger les stades et les événements mondiaux grâce à l'IA auto-apprenante







Stadium and large public venue operators are confronted with a unique set of cyber security challenges. Often described as a ‘honeypot’ for cyber-criminals, the entertainment industry is an attractive target for threat actors for three main reasons:
- Hacktivism – as witnessed during the Rio and Tokyo Olympic Games;
- The global stage of international events makes it a target for geopolitically motivated cyber-terrorism;
- The large sums of money at stake make event organizers and associated parties a prime target for financially motivated cyber-crime like ransomware.
The potential ramifications of cyber disruption during a large-scale event cannot be overstated. A momentary lapse in access to power could bring TV broadcasts to a halt; disruption to access controls could restrict fans from entering the grounds; CCTV outages could increase the risk of criminal behavior and physical injuries. If data is not reliable and stadium machines are outputting the wrong metrics, a venue could become dangerously overcrowded. The barrier between the cyber and physical worlds has long dissolved – cyber-attacks threaten human safety.
In this blog, I explore the key challenges of stadium cyber security and explain the unique capabilities of Self-Learning AI that led me to adopt Darktrace as a head of ICT and cyber security for international venues and events.
The access paradox
The biggest challenge lies in the paradox of securing a site where various internal services are provided to a large number of unknown and uncontrolled users, suppliers and devices.
When it’s game time, or ‘D-Day’, you see a huge influx of thousands of people, each with their own devices, needing to connect to your network and your infrastructure. The floodgates are opened. But of course, certain parts of your digital environment need to remain protected: your sensitive employee and customer data, your critical OT systems. I liken this to opening the door to your home, and letting the entire town come in and wander around. But you still need to secure your master bedroom.
A multitude of different actors must be able to work on site to provide services or content during the event. Broadcasters, staff and suppliers need to have access to managing the show, and all of these people need to access or interact with the IT infrastructure. In many ways, these additional bodies are already inside the perimeter and could host unknown malicious threats.
Achieving this balance between accessibility and security requires a shift in mindset from perimeter-based security to one that can detect and respond to threats on the inside. The complexities involved requires technology that can identify malicious behavior in real time based on the wider context of an incident. A particular behavior or connection may be benign in one context and yet critically disruptive in another — tools and technology must be able to discern between the two.
This is why I considered Darktrace’s Self-Learning AI a suitable fit: rather than defending at the perimeter, it focuses on detecting and responding to malicious activity already inside. Because it learns the unique ‘patterns of life’ of its surroundings, it can detect subtle deviations that indicate a threat and initiate a targeted response – without relying on pre-programmed rules and playbooks.
IT/OT convergence
The second key challenge is the issue of IT and OT convergence. Typical stadiums and arenas consist of a wide range of Industrial Control Systems (ICS).

Figure 1: The interconnected IT/OT components of a stadium
This involves a complex and messy array of switches, cables, CCTV cameras, as well as devices and technologies being brought in by the media and the press, and all these IT and OT components are now interconnected, which means these technologies now have Internet Protocol (IP)-based threats to manage.
The same challenges that the corporate infrastructure for stadium management faces in cyber security are therefore also now an issue for ICS security.
This challenge cannot be addressed by viewing IT and OT security in isolation — these two environments are linked because of the analogue migration to IP. A unified approach is required to detect and respond to threats that start in IT before moving to industrial systems. In addition, cyber security technology must be able to deal with complexity.
Darktrace’s AI thrives in the most complex environments, with more data points adding more context to inform the AI’s decision making. It covers OT and IT with a single, unified AI engine, that can also detect and respond across cloud infrastructure, SaaS applications, email systems and endpoints. It is ready to adapt to the messy, interconnected systems that make up large stadiums’ digital infrastructure.
The time factor
Finally, the nature of stadium events means that timing is critical and puts enormous pressure on the organizers and operators. ‘D-Day’ cannot be replayed or postponed, and so if cyber disruption occurs during the event, every minute is crucial.
There is consequently a strong emphasis on two key metrics that will be familiar to the wider audience: Mean Time To Know (MTTK) — how long it takes the security team need to be aware of an incident; and Mean Time To Restore (MTTR) — how quickly a team can act to contain the threat. It is perhaps more imperative in stadium event management than anywhere else that these two metrics be minimized.
This leads to the third criteria in assessing cyber security technology: does it help with response? And critically, can that response be nuanced and targeted, able to contain that threat without causing further disruption?
To this end, Darktrace’s Autonomous Response takes machine-speed action to contain cyber-attacks, when humans are too slow to react or aren’t around at all. It’s powered by Darktrace’s AI, so it has a nuanced and continuously updating understanding of what’s ‘normal’ across IT and OT systems. This means its response actions are targeted: designed to eliminate the threat, but not at the cost of disruption. Depending on the nature and severity of the threat, the technology can block specific malicious connections by enforcing the normal ‘pattern of life’ of a device or account. When every second counts, this is the speed and granularity that you need in a cyber security technology.
Plug and play
For stadiums and large venue operators, Darktrace’s trial period is typically extended for the AI to learn ‘normal’ over a longer period of time, capturing both ‘business as usual’, and ‘event time’. The sophistication of the AI enables it to factor event day into its understanding of ‘normal’.
When event day comes around, the technology has a nuanced understanding of how every user and device typically behaves, and can identify subtle deviations indicative of a threat.
It can be deployed across every area of the digital enterprise – including email, adding an invaluable layer of defense as any new event will entail thousands of email exchanges with new senders to prepare for the event, adding to the propagation risk of viruses or ransomware. It also covers cloud and SaaS environments with the same self-learning approach, stopping anomalous behaviors that point to account takeover and other cloud-based threats.
Wherever it is deployed, Darktrace allows the stadium operator to focus on the vital part of the game and offers real-time protection without any modification in the network topology or infrastructure.
An adaptive defense
Cyber-criminals are constantly developing their approach in an attempt to evade security tools trained to look for specific hallmarks of an attack. As they get creative and continuously experiment with new tactics and techniques, the human operators using these tools are forced into a constant state of catch up.

Figure 2: Cyber security is an evolving game of attack and defense
An AI-based approach that learns an organization from the ground up puts an end to this game of ‘cat and mouse’, shifting the balance in favor of the defenders and allowing them to stay ahead of the threat.
With a nuanced understanding of what’s ‘normal’ for the business, unified IT/OT coverage, and an Autonomous Response solution that takes immediate, targeted action, the playing field is levelled and large stadium and events operators can focus on delivering the best possible experience for attendees, digital viewers, partners and performers.
Vous aimez ça et en voulez plus ?
More in this series
Blog
A l'intérieur du SOC
Protecting Prospects: How Darktrace Detected an Account Hijack Within Days of Deployment



Cloud Migration Expanding the Attack Surface
Cloud migration is here to stay – accelerated by pandemic lockdowns, there has been an ongoing increase in the use of public cloud services, and Gartner has forecasted worldwide public cloud spending to grow around 20%, or by almost USD 600 billion [1], in 2023. With more and more organizations utilizing cloud services and moving their operations to the cloud, there has also been a corresponding shift in malicious activity targeting cloud-based software and services, including Microsoft 365, a prominent and oft-used Software-as-a-Service (SaaS).
With the adoption and implementation of more SaaS products, the overall attack surface of an organization increases – this gives malicious actors additional opportunities to exploit and compromise a network, necessitating proper controls to be in place. This increased attack surface can leave organization’s open to cyber risks like cloud misconfigurations, supply chain attacks and zero-day vulnerabilities [2]. In order to achieve full visibility over cloud activity and prevent SaaS compromise, it is paramount for security teams to deploy sophisticated security measures that are able to learn an organization’s SaaS environment and detect suspicious activity at the earliest stage.
Darktrace Immediately Detects Hijacked Account
In May 2023, Darktrace observed a chain of suspicious SaaS activity on the network of a customer who was about to begin their trial of Darktrace/Cloud™ and Darktrace/Email™. Despite being deployed on the network for less than a week, Darktrace DETECT™ recognized that the legitimate SaaS account, belonging to an executive at the organization, had been hijacked. Darktrace/Email was able to provide full visibility over inbound and outbound mail and identified that the compromised account was subsequently used to launch an internal spear-phishing campaign.
If Darktrace RESPOND™ were enabled in autonomous response mode at the time of this compromise, it would have been able to take swift preventative action to disrupt the account compromise and prevent the ensuing phishing attack.
Account Hijack Attack Overview
Unusual External Sources for SaaS Credentials
On May 9, 2023, Darktrace DETECT/Cloud detected the first in a series of anomalous activities performed by a Microsoft 365 user account that was indicative of compromise, namely a failed login from an external IP address located in Virginia.

Just a few minutes later, Darktrace observed the same user credential being used to successfully login from the same unusual IP address, with multi-factor authentication (MFA) requirements satisfied.

A few hours after this, the user credential was once again used to login from a different city in the state of Virginia, with MFA requirements successfully met again. Around the time of this activity, the SaaS user account was also observed previewing various business-related files hosted on Microsoft SharePoint, behavior that, taken in isolation, did not appear to be out of the ordinary and could have represented legitimate activity.
The following day, May 10, however, there were additional login attempts observed from two different states within the US, namely Texas and Florida. Darktrace understood that this activity was extremely suspicious, as it was highly improbable that the legitimate user would be able to travel over 2,500 miles in such a short period of time. Both login attempts were successful and passed MFA requirements, suggesting that the malicious actor was employing techniques to bypass MFA. Such MFA bypass techniques could include inserting malicious infrastructure between the user and the application and intercepting user credentials and tokens, or by compromising browser cookies to bypass authentication controls [3]. There have also been high-profile cases in the recent years of legitimate users mistakenly (and perhaps even instinctively) accepting MFA prompts on their token or mobile device, believing it to be a legitimate process despite not having performed the login themselves.
New Email Rule
On the evening of May 10, following the successful logins from multiple US states, Darktrace observed the Microsoft 365 user creating a new inbox rule, named “.’, in Microsoft Outlook from an IP located in Florida. Threat actors are often observed naming new email rules with single characters, likely to evade detection, but also for the sake of expediency so as to not expend any additional time creating meaningful labels.
In this case the newly created email rules included several suspicious properties, including ‘AlwaysDeleteOutlookRulesBlob’, ‘StopProcessingRules’ and “MoveToFolder”.
Firstly, ‘AlwaysDeleteOutlookRulesBlob’ suppresses or hides warning messages that typically appear if modifications to email rules are made [4]. In this case, it is likely the malicious actor was attempting to implement this property to obfuscate the creation of new email rules.
The ‘StopProcessingRules’ rule meant that any subsequent email rules created by the legitimate user would be overridden by the email rule created by the malicious actor [5]. Finally, the implementation of “MoveToFolder” would allow the malicious actor to automatically move all outgoing emails from the “Sent” folder to the “Deleted Items” folder, for example, further obfuscating their malicious activities [6]. The utilization of these email rule properties is frequently observed during account hijackings as it allows attackers to delete and/or forward key emails, delete evidence of exploitation and launch phishing campaigns [7].
In this incident, the new email rule would likely have enabled the malicious actor to evade the detection of traditional security measures and achieve greater persistence using the Microsoft 365 account.

Account Update
A few hours after the creation of the new email rule, Darktrace observed the threat actor successfully changing the Microsoft 365 user’s account password, this time from a new IP address in Texas. As a result of this action, the attacker would have locked out the legitimate user, effectively gaining full access over the SaaS account.

Phishing Emails
The compromised SaaS account was then observed sending a high volume of suspicious emails to both internal and external email addresses. Darktrace was able to identify that the emails attempting to impersonate the legitimate service DocuSign and contained a malicious link prompting users to click on the text “Review Document”. Upon clicking this link, users would be redirected to a site hosted on Adobe Express, namely hxxps://express.adobe[.]com/page/A9ZKVObdXhN4p/.
Adobe Express is a free service that allows users to create web pages which can be hosted and shared publicly; it is likely that the threat actor here leveraged the service to use in their phishing campaign. When clicked, such links could result in a device unwittingly downloading malware hosted on the site, or direct unsuspecting users to a spoofed login page attempting to harvest user credentials by imitating legitimate companies like Microsoft.

The malicious site hosted on Adobe Express was subsequently taken down by Adobe, possibly in response to user reports of maliciousness. Unfortunately though, platforms like this that offer free webhosting services can easily and repeatedly be abused by malicious actors. Simply by creating new pages hosted on different IP addresses, actors are able to continue to carry out such phishing attacks against unsuspecting users.
In addition to the suspicious SaaS and email activity that took place between May 9 and May 10, Darktrace/Email also detected the compromised account sending and receiving suspicious emails starting on May 4, just two days after Darktrace’s initial deployment on the customer’s environment. It is probable that the SaaS account was compromised around this time, or even prior to Darktrace’s deployment on May 2, likely via a phishing and credential harvesting campaign similar to the one detailed above.

Darktrace Coverage
As the customer was soon to begin their trial period, Darktrace RESPOND was set in “human confirmation” mode, meaning that any preventative RESPOND actions required manual application by the customer’s security team.
If Darktrace RESPOND had been enabled in autonomous response mode during this incident, it would have taken swift mitigative action by logging the suspicious user out of the SaaS account and disabling the account for a defined period of time, in doing so disrupting the attack at the earliest possible stage and giving the customer the necessary time to perform remediation steps. As it was, however, these RESPOND actions were suggested to the customer’s security team for them to manually apply.

Nevertheless, with Darktrace DETECT/Cloud in place, visibility over the anomalous cloud-based activities was significantly increased, enabling the swift identification of the chain of suspicious activities involved in this compromise.
In this case, the prospective customer reached out to Darktrace directly through the Ask the Expert (ATE) service. Darktrace’s expert analyst team then conducted a timely and comprehensive investigation into the suspicious activity surrounding this SaaS compromise, and shared these findings with the customer’s security team.
Conclusion
Ultimately, this example of SaaS account compromise highlights Darktrace’s unique ability to learn an organization’s digital environment and recognize activity that is deemed to be unexpected, within a matter of days.
Due to the lack of obvious or known indicators of compromise (IoCs) associated with the malicious activity in this incident, this account hijack would likely have gone unnoticed by traditional security tools that rely on a rules and signatures-based approach to threat detection. However, Darktrace’s Self-Learning AI enables it to detect the subtle deviations in a device’s behavior that could be indicative of an ongoing compromise.
Despite being newly deployed on a prospective customer’s network, Darktrace DETECT was able to identify unusual login attempts from geographically improbable locations, suspicious email rule updates, password changes, as well as the subsequent mounting of a phishing campaign, all before the customer’s trial of Darktrace had even begun.
When enabled in autonomous response mode, Darktrace RESPOND would be able to take swift preventative action against such activity as soon as it is detected, effectively shutting down the compromise and mitigating any subsequent phishing attacks.
With the full deployment of Darktrace’s suite of products, including Darktrace/Cloud and Darktrace/Email, customers can rest assured their critical data and systems are protected, even in the case of hybrid and multi-cloud environments.
Credit: Samuel Wee, Senior Analyst Consultant & Model Developer
Appendices
References
[2] https://www.upguard.com/blog/saas-security-risks
[4] https://learn.microsoft.com/en-us/powershell/module/exchange/disable-inboxrule?view=exchange-ps
[7] https://blog.knowbe4.com/check-your-email-rules-for-maliciousness
Darktrace Model Detections
Darktrace DETECT/Cloud and RESPOND Models Breached:
SaaS / Access / Unusual External Source for SaaS Credential Use
SaaS / Unusual Activity / Multiple Unusual External Sources for SaaS Credential
Antigena / SaaS / Antigena Unusual Activity Block (RESPOND Model)
SaaS / Compliance / New Email Rule
Antigena / SaaS / Antigena Significant Compliance Activity Block
SaaS / Compromise / Unusual Login and New Email Rule (Enhanced Monitoring Model)
Antigena / SaaS / Antigena Suspicious SaaS Activity Block (RESPOND Model)
SaaS / Compromise / SaaS Anomaly Following Anomalous Login (Enhanced Monitoring Model)
SaaS / Compromise / Unusual Login and Account Update
Antigena / SaaS / Antigena Suspicious SaaS Activity Block (RESPOND Model)
IoC – Type – Description & Confidence
hxxps://express.adobe[.]com/page/A9ZKVObdXhN4p/ - Domain – Probable Phishing Page (Now Defunct)
37.19.221[.]142 – IP Address – Unusual Login Source
35.174.4[.]92 – IP Address – Unusual Login Source
MITRE ATT&CK Mapping
Tactic - Techniques
INITIAL ACCESS, PRIVILEGE ESCALATION, DEFENSE EVASION, PERSISTENCE
T1078.004 – Cloud Accounts
DISCOVERY
T1538 – Cloud Service Dashboards
CREDENTIAL ACCESS
T1539 – Steal Web Session Cookie
RESOURCE DEVELOPMENT
T1586 – Compromise Accounts
PERSISTENCE
T1137.005 – Outlook Rules

Blog
Darktrace/Email in Action: Why AI-Driven Email Security is the Best Defense Against Sustained Phishing Campaigns
_11zon.jpg)


Stopping the bad while allowing the good
Since its inception, email has been regarded as one of the most important tools for businesses, revolutionizing communication and allowing global teams to become even more connected. But besides organizations heavily relying on email for their daily operations, threat actors have also recognized that the inbox is one of the easiest ways to establish an initial foothold on the network.
Today, not only are phishing campaigns and social engineering attacks becoming more prevalent, but the level of sophistication of these attacks are also increasing with the help of generative AI tools that allow for the creation of hyper-realistic emails with minimal errors, effectively lowering the barrier to entry for threat actors. These diverse and stealthy types of attacks evade traditional email security tools based on rules and signatures, because they are less likely to contain the low-sophistication markers of a typical phishing attack.
In a situation where the sky is the limit for attackers and security teams are lean, how can teams equip themselves to tackle these threats? How can they accurately detect increasingly realistic malicious emails and neutralize these threats before it is too late? And importantly, how can email security block these threats while allowing legitimate emails to flow freely?
Instead of relying on past attack data, Darktrace’s Self-Learning AI detects the slightest deviation from a user’s pattern of life and responds autonomously to contain potential threats, stopping novel attacks in their tracks before damage is caused. It doesn’t define ‘good’ and ‘bad’ like traditional email tools, rather it understands each user and what is normal for them – and what’s not.
This blog outlines how Darktrace/Email™ used its understanding of ‘normal’ to accurately detect and respond to a sustained phishing campaign targeting a real-life company.
Responding to a sustained phishing attack
Over the course of 24 hours, Darktrace detected multiple emails containing different subjects, all from different senders to different recipients in one organization. These emails were sent from different IP addresses, but all came from the same autonomous system number (ASN).

The emails themselves had many suspicious indicators. All senders had no prior association with the recipient, and the emails generated a high general inducement score. This score is generated by structural and non-specific content analysis of the email – a high score indicates that the email is trying to induce the recipient into taking a particular action, which may lead to account compromise.
Additionally, each email contained a visually prominent link to a file storage service, hidden behind a shortened bit.ly link. The similarities across all these emails pointed to a sustained campaign targeting the organization by a single threat actor.


With all these suspicious indicators, many models were breached. This drove up the anomaly score, causing Darktrace/Email to hold all suspicious emails from the recipients’ inboxes, safeguarding the recipients from potential account compromise and disallowing the threats from taking hold in the network.
Imagining a phishing attack without Darktrace/Email
So what could have happened if Darktrace had not withheld these emails, and the recipients had clicked on the links? File storage sites have a wide variety of uses that allow attackers to be creative in their attack strategy. If the user had clicked on the shortened link, the possible consequences are numerous. The link could have led to a login page for unsuspecting victims to input their credentials, or it could have hosted malware that would automatically download if the link was clicked. With the compromised credentials, threat actors could even bypass MFA, change email rules, or gain privileged access to a network. The downloaded malware might also be a keylogger, leading to cryptojacking, or could open a back door for threat actors to return to at a later time.


The limits of traditional email security tools
Secure email gateways (SEGs) and static AI security tools may have found it challenging to detect this phishing campaign as malicious. While Darktrace was able to correlate these emails to determine that a sustained phishing campaign was taking place, the pattern among these emails is far too generic for specific rules as set in traditional security tools. If we take the characteristic of the freemail account sender as an example, setting a rule to block all emails from freemail accounts may lead to more legitimate emails being withheld, since these addresses have a variety of uses.
With these factors in mind, these emails could have easily slipped through traditional security filters and led to a devastating impact on the organization.
Conclusion
As threat actors step up their attacks in sophistication, prioritizing email security is more crucial than ever to preserving a safe digital environment. In response to these challenges, Darktrace/Email offers a set-and-forget solution that continuously learns and adapts to changes in the organization.
Through an evolving understanding of every environment in which it is deployed, its threat response becomes increasingly precise in neutralizing only the bad, while allowing the good – delivering email security that doesn’t come at the expense of business growth.