Blog

Aucun élément trouvé.

Integration in Focus: Bringing Machine Learning to Third-Party EDR Alerts

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
12
Dec 2022
12
Dec 2022
This blog walks through the key benefits of integrating EDR technologies with Darktrace.

This blog demonstrates how we use EDR integration in Darktrace for detection & investigation. We’ll look at four key features, which are summarized with an example below:  

1)    Contextualizing existing Darktrace information – E.g. ‘There was a Microsoft Defender for Endpoint (MDE) alert 5 minutes after Darktrace saw the device beacon to an unusual destination on the internet. Let me pivot back into the Defender UI’
2)    Cross-data detection engineering
‘Darktrace, create an alert or trigger a response if you see a specific MDE alert and a native Darktrace detection on the same entity over a period of time’
3)    Applying unsupervised machine learning to third-party EDR alerts
‘Darktrace, create an alert or trigger a response if there is a specific MDE alert that is unusual for the entity, given the context’
4)    Use third-party EDR alerts to trigger AI Analyst
‘AI Analyst, this low-fidelity MDE alert flagged something on the endpoint. Please take a deep look at that device at the time of the Defender alert, conduct an investigation on Darktrace data and share your conclusions about whether there is more to it or not’ 

MDE is used as an example above, but Darktrace’s EDR integration capabilities extend beyond MDE to other EDRs as well, for example to Sentinel One and CrowdStrike EDR.

Darktrace brings its Self-Learning AI to your data, no matter where it resides. The data can be anywhere – in email environments, cloud, SaaS, OT, endpoints, or the network, for example. Usually, we want to get as close to the raw data as possible to get the maximum context for our machine learning. 

We will explain how we leverage high-value integrations from our technology partners to bring further context to Darktrace, but also how we apply our Self-Learning AI to third-party data. While there are a broad range of integrations and capabilities available, we will primarily look at Microsoft Defender for Endpoint, CrowdStrike, and SentinelOne and focus on detection in this blog post. 

The Nuts and Bolts – Setting up the Integration

Darktrace is an open platform – almost everything it does is API-driven. Our system and machine learning are flexible enough to ingest new types of data & combine it with already existing information.  

The EDR integrations mentioned here are part of our 1-click integrations. All it requires is the right level of API access from the EDR solutions and the ability for Darktrace to communicate with the EDR’s API. This type of integration can be setup within minutes – it currently doesn’t require additional Darktrace licenses.

Figure 1: Set-up of Darktrace Graph Security API integration

As soon as the setup is complete, it enables various additional capabilities. 
Let’s look at some of the key detection & investigation-focussed capabilities step-by-step.

Contextualizing Existing Darktrace Information

The most basic, but still highly-useful integration is enriching existing Darktrace information with EDR alerts. Darktrace shows a chronological history of associated telemetry and machine learning for each entity observed in the entities event log. 

With an EDR integration enabled, we now start to see EDR alerts for the respective entities turn up in the entity’s event log at the correct point in time – with a ton of context and a 1-click pivot back to the native EDR console: 

Figure 2: A pivot from the Darktrace Threat Visualizer to Microsoft Defender

This context is extremely useful to have in a single screen during investigations. Context is king – it reduces time-to-meaning and skill required to understand alerts.

Cross-Data Detection Engineering

When an EDR integration is activated, Darktrace enables an additional set of detections that leverage the new EDR alerts. This comes out of the box and doesn’t require any further detection engineering. It is worth mentioning though that the new EDR information is being made available in the background for bespoke detection engineering, if advanced users want to leverage these as custom metrics.

The trick here is that the added context provided by the additional EDR alerts allows for more refined detections – primarily to detect malicious activity with higher confidence. A network detection showing us beaconing over an unusual protocol or port combination to a rare destination on the internet is great – but seeing within Darktrace that CrowdStrike detected a potentially hostile file or process three minutes prior to the beaconing detection on the same device will greatly help to prioritize the detections and aid a subsequent investigation.

Here is an example of what this looks like in Darktrace:

Figure 3: A combined model breach in the Threat Visualizer

Applying Unsupervised Machine Learning to Third-Party EDR Alerts


Once we start seeing EDR alerts in Darktrace, we can start treating it like any other data – by applying unsupervised machine learning to it. This means we can then understand how unusual a given EDR detection is for each device in question. This is extremely powerful – it allows to reduce noisy alerts without requiring ongoing EDR alert tuning and opens a whole world of new detection capabilities.

As an example – let’s imagine a low-level malware alert keeps appearing from the EDR on a specific device. This might be a false-positive in the EDR, or just not of interest for the security team, but they may not have the resources or knowledge to further tune their EDR and get rid of this noisy alert.

While Darktrace keeps adding this as contextual information in the device’s event log, it could, depending on the context of the device, the EDR alert, and the overall environment, stop alerting on this particular EDR malware alert on this specific device if it stops being unusual. Over time, noise is reduced across the environment – but if that particular EDR alert appears on another device, or on the same device in a different context, it might get flagged again, as it now is unusual in the given context.

Darktrace then goes a step further, taking those unusual EDR alerts and combining them with unusual activity seen in other Darktrace coverage areas, like the network for example. Combining an unusual EDR alert with an unusual lateral movement attempt, for example, allows it to find these combined, high-precision, cross-data set anomalous events that are highly indicative of an active cyber-attack – without having to pre-define the exact nature of what ‘unusual’ looks like.

Figure 4: Combined EDR & network detection using unsupervised machine learning in Darktrace

Use Third-Party EDR Alerts to Trigger AI Analyst

Everything we discussed so far is great for improving precision in initial detections, adding context, and cutting through alert-noise. We don’t stop there though – we can also now use the third-party EDR alerts to trigger our investigation engine, the AI Analyst.

Cyber AI Analyst replicates and automates typical level 1 and level 2 Security Operations Centre (SOC) workflows. It is usually triggered by every native Darktrace detection. This is not a SOAR where playbooks are statically defined – AI Analyst builds hypotheses, gathers data, evaluates the data & reports on its findings based on the context of each individual scenario & investigation. 

Darktrace can use EDR alerts as starting points for its investigation, with every EDR alert ingested now triggering AI Analyst. This is similar to giving a (low-level) EDR alert to a human analyst and telling them: ‘Go and take a look at information in Darktrace and try to conclude whether there is more to this EDR alert or not.’

The AI Analyst subsequently looks at the entity which had triggered the EDR alert and investigates all available Darktrace data on that entity, over a period of time, in light of that EDR alert. It does not pivot outside Darktrace itself for that investigation (e.g. back into the Microsoft console) but looks at all of the context natively available in Darktrace. If concludes that there is more to this EDR alert – e.g. a bigger incident – it will report on that and clearly flag it. The report can of course be directly downloaded as a PDF to be shared with other stakeholders.

This comes in handy for a variety of reasons – primarily to further automate security operations and alleviate pressure from human teams. AI Analyst’s investigative capabilities sit on top of everything we discussed so far (combining EDR detections with detections from other coverage areas, applying unsupervised machine learning to EDR detections, …).

However, it can also come in handy to follow up on low-severity EDR alerts for which you might not have the human resources to do so.

The below screenshot shows an example of a concluded AI Analyst investigation that was triggered by an EDR alert:

Figure 5: An AI Analyst incident trained on third-party data

The Impact of EDR Integrations

The purpose behind all of this is to augment human teams, save them time and drive further security automation.

By ingesting third-party endpoint alerts, combining it with our existing intelligence and applying unsupervised machine learning to it, we achieve that further security automation. 

Analysts don’t have to switch between consoles for investigations. They can leverage our high-fidelity detections that look for unusual endpoint alerts, in combination with our already powerful detections across cloud and email systems, zero trust architecture, IT and OT networks, and more. 

In our experience, this pinpoints the needle in the haystack – it cuts through noise and reduces the mean-time-to-detect and mean-time-to-investigate drastically.

All of this is done out of the box in Darktrace once the endpoint integrations are enabled. It does not need a data scientist to make the machine learning work. Nor does it need a detection engineer or threat hunter to create bespoke, meaningful detections. We want to reduce the barrier to entry for using detection and investigation solutions – in terms of skill and experience required. The system is still flexible, transparent, and open, meaning that advanced users can create their own combined detections, leveraging unsupervised machine learning across different data sets with a few clicks.

There are of course more endpoint integration capabilities available than what we covered here, and we will explore these in future blog posts.

DANS LE SOC
Darktrace sont des experts de classe mondiale en matière de renseignement sur les menaces, de chasse aux menaces et de réponse aux incidents. Ils fournissent une assistance SOC 24 heures sur 24 et 7 jours sur 7 à des milliers de clients Darktrace dans le monde entier. Inside the SOC est exclusivement rédigé par ces experts et fournit une analyse des cyberincidents et des tendances en matière de menaces, basée sur une expérience réelle sur le terrain.
AUTEUR
à propos de l'auteur
Max Heinemeyer
Directeur général des produits

Max is a cyber security expert with over a decade of experience in the field, specializing in a wide range of areas such as Penetration Testing, Red-Teaming, SIEM and SOC consulting and hunting Advanced Persistent Threat (APT) groups. At Darktrace, Max is closely involved with Darktrace’s strategic customers & prospects. He works with the R&D team at Darktrace, shaping research into new AI innovations and their various defensive and offensive applications. Max’s insights are regularly featured in international media outlets such as the BBC, Forbes and WIRED. Max holds an MSc from the University of Duisburg-Essen and a BSc from the Cooperative State University Stuttgart in International Business Information Systems.

Book a 1-1 meeting with one of our experts
share this article
CAS D'UTILISATION
Aucun élément trouvé.
Couverture de base

More in this series

Aucun élément trouvé.

Blog

Aucun élément trouvé.

Customer Blog: Community Housing Limited Enhancing Incident Response

Default blog imageDefault blog image
04
Mar 2024

About Community Housing Limited

Community Housing Limited is a non-profit organization based in Australia that focuses on providing affordable, long-term housing and creating employment opportunities where possible. We give people the security of having a home so that they can focus on other essential pathways. As such, we are responsible for sensitive information on our clients.

As part of our commitment to strengthening our cyber security, we sought to simplify and unify our incident response plans and equip our engineers and desktop support teams with all the information we need at our fingertips.

Why Community Housing Limited chose Darktrace

Our team hoped to achieve a response procedure that allowed us to have oversight over any potential security risks, even cases that don’t overtly seem like a security risk. For example, an incident could start as a payroll issue and end up in the hands of HR, instead of surfacing as a security problem. In this case, our security team has no way of knowing the real number of events or how the threat had actually started and played out, making incident response and mitigation even more challenging.

We were already a customer of Darktrace’s autonomous threat detection, attack intervention, and attack surface management capabilities, and decided to add Darktrace for AI-assisted incident response and AI cyber-attack simulation.

AI-generated playbooks save time during incident response

I wanted to reduce the time and resources it took our security team to appropriately respond to a threat. Darktrace automates several steps of the recovery process to accelerate the rate of incident response by using AI that learns the granular details of the specific organization, building a dynamic understanding of the devices, connections, and user behaviors that make up the normal “pattern of life.”  

The AI then uses this understanding to create bespoke, AI-generated incident response playbooks that leverage an evolving understanding of our organization to determine recovery steps that are tailored not only to the specific incident but also to our unique environment.

For my security team, this means having access to all the information we need to respond to a threat. When running through an incident, rather than going to different places to synthesize relevant information, which takes up valuable resources and time, we can speed up its remediation with Darktrace.  

The playbooks created by Darktrace help lower the technical skills required to respond to incidents by elevating the workload of the staff, tripling our capacity for incident response.

Realistic attack simulations upskill teams while saving resources

We have differing levels of experience on the team which means some members know exactly what to do during incident response while others are slower and need more guidance. Thus, we have to either outsource skilled security professionals or add a security solution that could lower the technical skills bar.

You don’t want to be second guessing and searching for the right move – it’s urgent – there should be certainty. Our goal with running attack simulations is to test and train our team's response capabilities in a “realistic” scenario. But this takes considerable time to plan and execute or can be expensive if outsourced, which can be a challenge for organizations short on resources. 

Darktrace provides AI-assisted incident response and cyber-attack simulation using AI that understands the organization to run simulations that effectively map onto the real digital environment and the assets within it, providing training for actual incidents.

It is one thing to sit together in a meeting and discuss various outcomes of a cyber-attack, talking through the best response strategies. It is a huge benefit being able to run attack simulations that emulate real-world scenarios.

Our team can now see how an incident would play out over several days to resemble a real-world scenario or it can play through the simulation quickly to ascertain outcomes immediately. It then uses these insights to strengthen its technology, processes, and training.

AI-Powered Incident Response

Darktrace helps my security team save resources and upskill staff using AI to generate bespoke playbooks and run realistic simulations. Its real-time understanding of our business ensures incident preparedness and incident response are tailored to not only the specific threat in question, but also to the contextual infrastructure of the organization.  

Continue reading
About the author
Jamie Woodland
Head of Technology at Community Housing Limited

Blog

Email

Beyond DMARC: Navigating the Gaps in Email Security

Default blog imageDefault blog image
29
Feb 2024

Email threat landscape  

Email has consistently ranked among the most targeted attack vectors, given its ubiquity and criticality to business operations. From September to December 2023, 10.4 million phishing emails were detected across Darktrace’s customer fleet demonstrating the frequency of attempted email-based attacks.

Businesses are searching for ways to harden their email security posture alongside email providers who are aiming to reduce malicious emails traversing their infrastructure, affecting their clients. Domain-based Message Authentication (DMARC) is a useful industry-wide protocol organizations can leverage to move towards these goals.  

What is DMARC?

DMARC is an email authentication protocol designed to enhance the security of email communication.

Major email service providers Google and Yahoo recently made the protocol mandatory for bulk senders in an effort to make inboxes safer worldwide. The new requirements demonstrate an increasing need for a standardized solution as misconfigured or nonexistent authentication systems continue to allow threat actors to evade detection and leverage the legitimate reputation of third parties.  

DMARC is a powerful tool that allows email administrators to confidently identify and stop certain spoofed emails; however, more organizations must implement the standard for it to reach its full potential. The success and effectiveness of DMARC is dependent on broad adoption of the standard – by organizations of all sizes.  

How does DMARC work?

DMARC builds on two key authentication technologies, Sender Policy Framework (SPF) and DomainKeys Identified Mail (DKIM) and helps to significantly improve their ability to prevent domain spoofing. SPF verifies that a sender’s IP address is authorized to send emails on behalf of a particular domain and DKIM ensures integrity of email content by providing a verifiable digital signature.  

DMARC adds to this by allowing domain owners to publish policies that set expectations for how SPF and DKIM verification checks relate to email addresses presented to users and whose authenticity the receiving mail server is looking to establish.  

These policies work in tandem to help authenticate email senders by verifying the emails are from the domain they say they are, working to prevent domain spoofing attacks. Key benefits of DMARC include:

  1. Phishing protection DMARC protects against direct domain spoofing in which a threat actor impersonates a legitimate domain, a common phishing technique threat actors use to trick employees to obtain sensitive information such as privileged credentials, bank information, etc.  
  2. Improving brand reputation: As DMARC helps to prevent impersonation of domains, it stands to maintain and increase an organization’s brand reputation. Additionally, as organizational reputation improves, so will the deliverability of emails.
  3. Increased visibility: DMARC provides enhanced visibility into email communication channels, including reports of all emails sent on behalf of your domain. This allows security teams to identify shadow-IT and any unauthorized parties using their domain.

Understanding DMARC’s Limitations

DMARC is often positioned as a way for organizations to ‘solve’ their email security problems, however, 65% of the phishing emails observed by Darktrace successfully passed DMARC verification, indicating that a significant number of threat actors are capable of manipulating email security and authentication systems in their exploits. While DMARC is a valuable tool in the fight against email-based attacks, the evolving threat landscape demands a closer look at its limitations.  

As threat actors continue to innovate, improving their stealth and evasion tactics, the number of attacks with valid DMARC authentication will only continue to increase in volume and sophistication. These can include:

  1. Phishing attacks that leverage non-spoofed domains: DMARC allows an organization to protect the domains that they own, preventing threat actors from being able to send phishing emails from their domains. However, threat actors will often create and use ‘look-a-like’ domains that closely resemble an organization’s domain to dupe users. 3% of the phishing emails identified by Darktrace utilized newly created domains, demonstrating shifting tactics.  
  2. Email Account Takeovers: If a threat actor gains access to a user’s email account through other social engineering means such as credential stuffing, they can then send phishing emails from the legitimate domain to pursue further attacks. Even though these emails are malicious, DMARC would not identify them as such because they are coming from an authorized domain or sender.  

Organizations must also ensure their inbound analysis of emails is not skewed by successful DMARC authentication. Security teams cannot inherently trust emails that pass DMARC, because the source cannot always be legitimized, like in the event of an account takeover. If a threat actor gains access to an authenticated email account, emails sent by the threat actor from that account will pass DMARC – however the contents of that email may be malicious. Sender behavior must be continuously evaluated and vetted in real time as past communication history and validated DMARC cannot be solely relied upon amid an ever-changing threat landscape.  

Security teams should lean on other security measures, such as anomaly detection tools that can identify suspicious emails without relying on historical attack rules and static data. While DMARC is not a silver bullet for email security, it is nevertheless foundational in helping organizations protect their brand identity and must be viewed as an essential layer in an organization's overall cyber security strategy.  

Implementing DMARC

Despite the criticality of DMARC for preserving brand reputation and trust, adoption of the standard has been inconsistent. DMARC can be complex to implement with many organizations lacking the time required to understand and successfully implement the standard. Because of this, DMARC set-up is often outsourced, giving security and infrastructure teams little to no visibility into or control of the process.  

Implementation of DMARC is only the start of this process, as DMARC reports must be consistently monitored to ensure organizations have visibility into who is sending mail from their domain, the volume of mail being sent and whether the mail is passing authentication protocols. This process can be time consuming for security teams who are already faced with mounting responsibilities, tight budgets, and personnel shortages. These complexities unfortunately delay organizations from using DMARC – especially as many today still view it as a ‘nice to have’ rather than an essential.  

With the potential complexities of the DMARC implementation process, there are many ways security and infrastructure teams can still successfully roll out the standard. Initial implementation should start with monitoring, policy adjustment and then enforcement. As business changes over time, DMARC should be reviewed regularly to ensure ongoing protection and maintain domain reputation.

The Future of Email Security

As email-based attacks continue to rise, the industry must recognize the importance of driving adoption of foundational email authentication protocols. To do this, a new and innovative approach to DMARC is needed. DMARC products must evolve to better support organizations throughout the ongoing DMARC monitoring process, rather than just initial implementation. These products must also be able to share intelligence across an organization’s security stack, extending beyond email security tools. Integration across these products and tools will help organizations optimize their posture, ensuring deep understanding of their domain and increased visibility across the entire enterprise.

DMARC is critical in protecting brand identity and mitigating exact-domain based attacks. However, organizations must understand DMARC’s unique benefits and limitations to ensure their inboxes are fully protected. In today’s evolving threat landscape, organizations require a robust, multi-layered approach to stop email threats – in inbound mail and beyond. Email threats have evolved – its time security does too.

Join Darktrace on 9 April for a virtual event to explore the latest innovations needed to get ahead of the rapidly evolving threat landscape. Register today to hear more about our latest innovations coming to Darktrace’s offerings. For additional insights check out Darktrace’s 2023 End of Year Threat Report.

Credit to Carlos Gray and Stephen Pickman for their contribution to this blog

Continue reading
About the author
Carlos Gray
Product Manager

Bonne nouvelle pour votre entreprise.
Mauvaise nouvelle pour les méchants.

Commencez votre essai gratuit

Commencez votre essai gratuit

Livraison flexible
Cloud-based deployment.
Installation rapide
Une heure seulement pour la mise en place - et encore moins pour un essai de sécurité du courrier électronique.
Choisissez votre voyage
Essayez Self-Learning AI là où vous en avez le plus besoin - y compris dans le cloud, sur le réseau ou par courriel.
Aucun engagement
Accès complet à Darktrace Threat Visualizer et à trois rapports sur mesure sur les menaces, sans obligation d'achat.
For more information, please see our Privacy Notice.
Thanks, your request has been received
A member of our team will be in touch with you shortly.
YOU MAY FIND INTERESTING
Oups ! Un problème est survenu lors de la soumission du formulaire.

Obtenez une démo

Livraison flexible
Vous pouvez l'installer virtuellement ou avec du matériel.
Installation rapide
Une heure seulement pour la mise en place - et encore moins pour un essai de sécurité du courrier électronique.
Choisissez votre voyage
Essayez Self-Learning AI là où vous en avez le plus besoin - y compris dans le cloud, sur le réseau ou par courriel.
Aucun engagement
Accès complet à Darktrace Threat Visualizer et à trois rapports sur mesure sur les menaces, sans obligation d'achat.
Merci ! Votre soumission a été reçue !
Oups ! Un problème est survenu lors de la soumission du formulaire.