Blog
Cloud
Illuminer les environnements de cloud AWS avec Darktrace Cyber AI







Cloud platforms transform the way we build digital infrastructure, allowing us to create incredibly innovative environments for business – but often, it’s at the cost of visibility and control.
With complex hybrid and multi-cloud infrastructures becoming an essential part of increasingly diverse digital estates, the journey to the cloud has fundamentally reshaped the traditional paradigm of the network perimeter, while expanding the attack surface at an alarming rate. Meanwhile, traditional security controls still only offer point solutions that rely on retrospective rules and threat signatures and fail to stop novel and advanced attacks.
To shoulder the weight of shared responsibility for cloud security, organizations require the approach offered by Darktrace DETECT & RESPOND. With Self-Learning AI, DETECT continuously learns what normal ‘patterns of life’ look like for every user, device, virtual machine, and container across an organization. By actively developing a bespoke understanding of ‘self,’ the DETECT can identify the subtle anomalies that point to an advanced attack, without any pre-defined assumptions of ‘good’ or ‘bad' and RESPOND can autonomously interfere to stop emerging threats without disrupting business operations.
As more and more businesses turn to AWS to leverage the benefits of cloud infrastructure, gaining visibility and security for AWS-hosted data and applications is absolutely crucial. The advent of AWS VPC traffic mirroring has allowed Darktrace to shine a light on blind spots in our customers’ AWS environments, ensuring that our Cyber AI security platform can stop any type of threat that emerges. With the AI-powered security securing your AWS environment, you can embrace all the benefits of the cloud with confidence.
Self-learning Cyber AI with granular, real-time visibility
VPC traffic mirroring gives our Self-Learning AI access to granular packet data, allowing DETECT to extract hundreds of features from the raw data and build rich behavioral models for our customers’ AWS cloud environments. This real-time visibility to the underlying fabric of AWS environments provided by VPC traffic mirroring helps Darktrace Cyber AI learn ‘on the job,’ continuously adapting as your business evolves. Darktrace provides the only security solution that learns in real time, a critical feature given the speed and scale of development in the cloud.
Unified control: Correlating patterns across infrastructure
Taking a fundamentally unique approach, DETECT actively correlates activity across AWS and beyond – whether your digital ecosystem includes other cloud environments, SaaS applications, or any range of on- and off-premise infrastructure. From a threat detection perspective, this is crucial, as security events detected in one part of an organization are often part of a broader security incident. This ensures that threats in the cloud are not siloed from monitoring of the rest of the infrastructure, nor are the implications for cloud security ignored when intrusions occur elsewhere in the network.
Neutralizing sophisticated and novel attacks
Legacy security controls miss novel and advanced attacks targeting cloud infrastructure. With VPC traffic mirroring supporting Darktrace Cyber AI’s understanding of an organization’s AWS environment, any slight changes from normal behavior that may indicate a potential threat can be detected immediately. This allows the DETECT to catch the full range of cloud-based attacks, from zero-day malware, to stealthy insider threats.
“Darktrace represents a new frontier in AI-based cyber defense. Our team now has complete real-time coverage across our SaaS applications and cloud containers.”
— CIO, City of Las Vegas
How it works: Using VPC traffic mirroring to analyze AWS traffic
For customers leveraging AWS within an IaaS model, Darktrace uses VPC traffic mirroring to collect metadata from mirrored VPC packets in a Darktrace probe known as a ‘vSensor’. The vSensor captures real-time traffic and selectively forwards relevant metadata to a Darktrace cloud instance or on-premise probe. From here, DETECT correlates VPC traffic with cloud, email, network, and SaaS traffic across a customer’s hybrid and multi-cloud infrastructure for analysis.
By utilizing VPC traffic mirroring in this way, the Immune System can perform deep packet inspection on traffic in the customer’s AWS cloud environment, up to and including the application layer. Hundreds of features are extracted from the raw data, ranging from high-level metrics of data flow quantities, to peer relationship meta-data, to specific application layer events. These features allow Darktrace Cyber AI to build rich behavioral models that let it understand normal patterns of life for the organization and detect malicious activity. It is important that Darktrace is able to construct these metrics from the raw data rather than relying on flow logs alone, as flow logs don't provide the required level of granularity or real-time events within connections.
For non-Nitro AWS instances, we deploy lightweight agents known as ‘OS-Sensors’ that feed relevant traffic to a local vSensor and, in turn, to a Darktrace cloud instance or on-premise probe. Once configured, OS-Sensors can easily be scaled as new instances are spun up. Darktrace also offers a specialized OS-Sensor that provides coverage in containerized systems like Docker and Kubernetes.
Richer context with AWS CloudTrail logs
In addition to analyzing data with VPC traffic mirroring, the DETECT also monitors management and data events within AWS. It does so via HTTP requests for logfiles generated by AWS CloudTrail, which monitors events from all AWS services, including:
- EC2
- IAM
- S3
- VPC
- Lambda
Different event types produced via CloudTrail are organized by Darktrace into categories based on the action type and the AWS services that generate it. These different categories show up as metrics in the DETECT user interface, the Threat Visualizer. This information is used to provide even richer context in connection with mirrored traffic in VPCs, as well as all cloud, network, email, and SaaS traffic across a customer’s entire digital environment.
Darktrace deployment scenarios for AWS customers
For IaaS environments, Darktrace deploys a vSensor in each cloud environment. Within AWS environments, the vSensor captures real-time traffic with AWS VPC traffic mirroring. The receiving vSensor processes the data and feeds it back to the cloud-based Darktrace instance. AWS customers additionally have the option of deploying a ‘Darktrace Security Module’ to monitor IaaS management and data events at the API level, such as logins, editing virtual servers, or creating new access credentials.

Figure 1: A cloud-only deployment scenario — Darktrace manages a master cloud probe which receives traffic from sensors and connectors in IaaS and/or SaaS environments.
For hybrid IaaS deployments, Darktrace will similarly deploy vSensors, and OS-Sensors as appropriate. Cloud traffic and event data from AWS and any other cloud environments is then fed to a Darktrace probe in the cloud or on-premise network. For the latter scenario, Darktrace will deploy a physical appliance that ingests real-time network traffic via a SPAN port or network tap, allowing it to correlate patterns across the entire digital ecosystem.

Figure 2: A hybrid cloud deployment scenario, with multi-cloud infrastructure across AWS, Azure and GCP
For hybrid SaaS deployments, Darktrace will deploy provider-specific Darktrace Security Modules on either a physical or cloud-based Darktrace probe, in addition to any other relevant vSensors and OS-Sensors in place. SaaS data is then analyzed and correlated with traffic and user behaviors across AWS, other cloud environments, and any on- and off- premise cyber-physical infrastructure.

Defense against the full range of threats in the cloud
With the deep insight and powerful reaction capabilities of Cyber AI, Darktrace DETECT & RESPOND are the only proven technologies to stop the full range of cyber-threats in the cloud, including:
- Critical misconfigurations
- Insider threat
- Compromised credentials
- Novel and advanced malware
- Password brute-force attacks
- Data exfiltration
- Lateral movement
- Man-in-the-middle attacks
- Crypto-jacking
- Violations of policy
Case Studies
Crypto mining malware inadvertently installed
Darktrace detected a mistake from a junior DevOps engineer in a multinational organization with workloads across AWS and Azure and leveraging containerized systems like Docker and Kubernetes. The engineer accidentally downloaded an update that included a crypto miner, which led to an infection across multiple cloud production systems.
After the initial infection, the malware started beaconing out to an external command and control server, which was immediately picked up by Darktrace. With the external connection established and the attack mission instructions delivered, the crypto malware infection was then able to rapidly spread across the organization’s expansive cloud infrastructure at machine speed, infecting 20 cloud servers in under 15 seconds.
Extensive visibility into the organization’s AWS environment via VPC traffic mirroring was a key factor allowing Darktrace Cyber AI to identify the scale of the attack. With the dynamic and unified view across the company’s sprawling hybrid and multi-cloud infrastructure provided by Darktrace, the company’s security team was able to contain the attack within minutes, rather than hours or days. Even though the attack moved at machine speed, by leveraging solutions like VPC traffic mirroring to continuously analyze behavior in the cloud, Darktrace caught the threat at an early enough stage – well before the costs could start to mount.
Developer misuse of AWS cloud infrastructure
At an insurance group, a DevOps Engineer was attempting to build a parallel back-up infrastructure within AWS to replicate the organization’s data center production systems. The technical implementation was perfect, and the back-up systems were created – however, the cost of running the system would have been several million dollars per year.
The DevOps Engineer was unaware of the costs associated with the project and kept management in the dark. The cloud infrastructure was launched, and the costs started rising. Yet with real-time access to the company’s AWS environment provided by VPC traffic mirroring, Darktrace’s Cyber AI was immediately alerted to this unusual behavior, allowing the security team to take preventative action immediately.
With Darktrace Cyber AI, embrace the benefits of AWS
As organizations increasingly turn to the cloud and the threat surface continues to expand, security teams need self-learning AI on their side to gain the strongest insights, illuminate every blind spot, and stop all attacks.
By providing an enterprise-wide Cyber AI platform, Darktrace helps teams overcome the traditional security challenge of manually piecing together incidents across disparate corners of an organization. The unified visibility and control offered by Darktrace PREVENT, DETECT, RESPOND, & HEAL reduces the complexity and dashboard fatigue that many teams continue to struggle with, while the system’s multi-dimensional insight enhances its decision-making and threat confidence. Darktrace further augments this process with the Immune System’s AI Analyst capability, which takes the additional step of automatically investigating threats detected by Darktrace and producing concise, AI-generated reports that communicate the full scope of an incident.
With the granular, real-time visibility of VPC traffic mirroring Darktrace, you can be certain your AWS cloud environments are always protected.
Vous aimez ça et en voulez plus ?
More in this series
Blog
A l'intérieur du SOC
Black Basta: Old Dogs with New Tricks



What is Black Basta?
Over the past year, security researchers have been tracking a new ransomware group, known as Black Basta, that has been observed targeted organizations worldwide to deploy double extortion ransomware attacks since early 2022. While the strain and group are purportedly new, evidence seen suggests they are an offshoot of the Conti ransomware group [1].
The group behind Black Basta run a Ransomware as a Service (RaaS) model. They work with initial access brokers who will typically already have a foothold in company infrastructure to begin their attacks. Once inside a network, they then pivot internally using numerous tools to further their attack.
Black Basta Ransomware
Like many other ransomware actors, Black Basta uses double extortion as part of its modus operandi, exfiltrating sensitive company data and using the publication of this as a second threat to affected companies. This is also advertised on a dark web site, setup by the group to apply further pressure for affected companies to make ransom payments and avoid reputational damage.
The group also seems to regularly take advantage of existing tools to undertake the earlier stages of their attacks. Notably, the Qakbot banking trojan, seems to be the malware often used to gain an initial foothold within compromised environments.
Analysis of the tools, procedures and infrastructure used by Black Basta belies a maturity to the actors behind the ransomware. Their models and practices suggest those involved are experienced individuals, and security researchers have drawn possible links to the Conti ransomware group.
As such, Black Basta is a particular concern for security teams as attacks will likely be more sophisticated, with attackers more patient and able to lie low on digital estates for longer, waiting for the opportune moment to strike.
Cyber security is an infinite game where defender and attacker are stuck as cat and mouse; as new attacks evolve, security vendors and teams respond to the new indicators of compromise (IoCs), and update their existing rulesets and lists. As a result, attackers are forced to change their stripes to evade detection or sometimes even readjust their targets and end goals.
Anomaly Based Detection
By using the power of Darktrace’s Self-Learning AI, security teams are able to detect deviations in behavior. Threat actors need to move through the kill chain to achieve their aims, and in doing so will cause affected devices within networks to deviate from their expected pattern of life. Darktrace’s anomaly-based approach to threat detection allows it recognize these subtle deviations that indicate the presence of an attacker, and stop them in their tracks.
Additionally, the ecosystem of cyber criminals has matured in the last few decades. It is well documented how many groups now operate akin to legitimate companies, with structure, departments and governance. As such, while new attack methods and tactics do appear in the wild, the maturity in their business models belie the experience of those behind the attack.
As attackers grow their business models and develop their arsenal of attack vectors, it becomes even more critical for security teams to remain vigilant to anomalies within networks, and remain agnostic to underlying IoCs and instead adopt anomaly detection tools able to identify tactics, techniques, and procedures (TTPs) that indicate attackers may be moving through a network, ahead of deployment of ransomware and data encryption.
Darktrace’s Coverage of Black Basta
In April 2023, the Darktrace Security Operations Center (SOC) assisted a customer in triaging and responding to an ongoing ransomware infection on their network. On a Saturday, the customer reached out directly to the Darktrace analyst team via the Ask the Expert service for support after they observed encrypted files and locked administrative accounts on their network. The analyst team were able to investigate and clarify the attack path, identifying affected devices and assisting the customer with their remediation. Darktrace DETECT™ observed varying IoCs and TTPs throughout the course of this attack’s kill chain; subsequent analysis into these indicators revealed this had likely been a case of Black Basta seen in the wild.
Initial Intrusion
The methods used by the group to gain an initial foothold in environments varies – sometimes using phishing, sometimes gaining access through a common vulnerability exposed to the internet. Black Basta actors appear to target specific organizations, as opposed to some groups who aim to hit multiple at once in a more opportunistic fashion.
In the case of the Darktrace customer likely affected by Black Basta, it is probable that the initial intrusion was out of scope. It may be that the path was via a phishing email containing an Microsoft Excel spreadsheet that launches malicious powershell commands; a noted technique for Black Basta. [3][4] Alternatively, the group may have worked with access brokers who already had a foothold within the customer’s network.
One particular device on the network was observed acting anomalously and was possibly the first to be infected. The device attempted to connect to multiple internal devices over SMB, and connected to a server that was later found to be compromised and is described throughout the course of this blog. During this connection, it wrote a file over SMB, “syncro.exe”, which is possibly a legitimate Remote Management software but could in theory be used to spread an infection laterally. Use of this tool otherwise appears sporadic for the network, and was notably unusual for the environment.
Given these timings, it is possible this activity is related to the likely Black Basta compromise. However, there is some evidence online that use of Syncro has been seen installed as part of the execution of loaders such as Batloader, potentially indicating a separate or concurrent attack [5].
Internal Reconnaissance + Lateral Movement
However the attackers gained access in this instance, the first suspicious activity observed by Darktrace originated from an infected server. The attacker used their foothold in the device to perform internal reconnaissance, enumerating large portions of the network. Darktrace DETECT’s anomaly detection noted a distinct rise in connections to a large number of subnets, particularly to closed ports associated with native Windows services, including:
- 135 (RPC)
- 139 (NetBIOS)
- 445 (SMB)
- 3389 (RDP)
During the enumeration, SMB connections were observed during which suspiciously named executable files were written:
- delete.me
- covet.me
Data Staging and Exfiltration
Around 4 hours after the scanning activity, the attackers used their knowledge gained during enumeration about the environment to begin gathering and staging data for their double extortion attempts. Darktrace observed the same infected server connecting to a file storage server, and downloading over 300 GiB of data. Darktrace DETECT identified that the connections had been made via SMB and was able to present a list of filenames to the customer, allowing their security team to determine the data that had likely been exposed to the attackers.
The SMB paths detected by Darktrace showed a range of departments’ file areas being accessed by threat actors. This suggests they were interested in getting as much varied data as possible, presumably in an attempt to ensure a large amount of valuable information was at their disposal to make any threats of releasing them more credible, and more damaging to the company.
Shortly after the download, the device made an external connection over SSH to a rare domain, dataspt[.]com, hosted in the United States. The connection itself was made over an unusual port, 2022, and Darktrace recognized that the domain was new for the network.
During this upload, the threat actors uploaded a similar volume of data to the 300GiB that had been downloaded internally earlier. Darktrace flagged the usual elements of this external upload, making the identification and triage of this exfiltration attempt easier for the customer.
On top of this, Darktrace’s autonomous investigation tool Cyber AI Analyst™ launched an investigation into this on-going activity and was able to link the external upload events to the internal download, identifying them as one exfiltration incident rather than two isolated events. AI Analyst then provided a detailed summary of the activity detected, further speeding up the identification of affected files.
Preparing for Exploitation
All the activity documented so far had occurred on a Wednesday evening. It was at this point that the burst of activity calmed, and the ransomware lay in wait within the environment. Other devices around the network, particularly those connected to by the original infected server and a domain controller, were observed performing some elements of anomalous activity, but the attack seemed to largely take a pause.
However, on the Saturday morning, 3 days later, the compromised server began to change the way it communicated with attackers by reaching out to a new command and control (C2) endpoint. It seemed that attackers were gearing up for their attack, taking advantage of the weekend to strike while security teams often run with a reduced staffing.
Darktrace identified connections to a new endpoint within 4 minutes of it first being seen on the customer’s environment. The server had begun making repeated SSL connections to the new external endpoint, faceappinc[.]com, which has been flagged as malicious by various open-source intelligence (OSINT) sources.
The observed JA3 hash (d0ec4b50a944b182fc10ff51f883ccf7) suggests that the command-line tool BITS Admin was being used to launch these connections, another suggestion of the use of mature tooling.
In addition to this, Darktrace also detected the server using an administrative credential it had never previously been associated with. Darktrace recognized that the use of this credential represented a deviation from the device’s usual activity and thus could be indicative of compromise.
The server then proceeded to use the new credential to authenticate over Keberos before writing a malicious file (“management.exe”) to the Temp directory on a number of internal devices.
Encryption
At this point, the number of anomalous activities detected from the server increased massively as the attacker seems to connect networkwide in an attempt to cause as quick and destructive an encryption effort as possible. Darktrace observed numerous files that had been encrypted by a local process. The compromised server began to write ransom notes, named “instructions_read_me.txt” to other file servers, which presumably also had successfully deployed payloads. While Black Basta actors had initially been observed dropping ransom notes named “readme.txt”, security researchers have since observed and reported an updated variant of the ransomware that drops “instructions_read_me_.txt”, the name of the file detected by Darktrace, instead [6].
Another server was also observed making repeated SSL connections to the same rare external endpoint, faceappinc[.]com. Shortly after beginning these connections, the device made an HTTP connection to a rare IP address with no hostname, 212.118.55[.]211. During this connection, the device also downloaded a suspicious executable file, cal[.]linux. OSINT research linked the hash of this file to a Black Basta Executable and Linkable File (ELF) variant, indicating that the group was highly likely behind this ransomware attack.
Of particular interest again, is how the attacker lives off the land, utilizing pre-installed Windows services. Darktrace flagged that the server was observed using PsExec, a remote management executable, on multiple devices.
Darktrace Assistance
Darktrace DETECT was able to clearly detect and provide visibility over all stages of the ransomware attack, alerting the customer with multiple model breaches and AI Analyst investigation(s) and highlighting suspicious activity throughout the course of the attack.
For example, the exfiltration of sensitive data was flagged for a number of anomalous features of the meta-data: volume; rarity of the endpoint; port and protocol used.
In total, the portion of the attack observed by Darktrace lasted about 4 days from the first model breach until the ransomware was deployed. In particular, the encryption itself was initiated on a Saturday.
The encryption event itself was initiated on a Saturday, which is not uncommon as threat actors tend to launch their destructive attacks when they expect security teams will be at their lowest capacity. The Darktrace SOC team regularly observes and assists in customer’s in the face of ransomware actors who patiently lie in wait. Attackers often choose to strike as security teams run on reduced hours of manpower, sometimes even choosing to deploy ahead of longer breaks for national or public holidays, for example.
In this case, the customer contacted Darktrace directly through the Ask the Expert (ATE) service. ATE offers customers around the clock access to Darktrace’s team of expert analysts. Customers who subscribe to ATE are able to send queries directly to the analyst team if they are in need of assistance in the face of suspicious network activity or emerging attacks.
In this example, Darktrace’s team of expert analysts worked in tandem with Cyber AI Analyst to investigate the ongoing compromise, ensuring that the investigation and response process were completed as quickly and efficiently as possible.
Thanks to Darktrace’s Self-Learning AI, the analyst team were able to quickly produce a detailed report enumerating the timeline of events. By combining the human expertise of the analyst team and the machine learning capabilities of AI Analyst, Darktrace was able to quickly identify anomalous activity being performed and the affected devices. AI Analyst was then able to collate and present this information into a comprehensive and digestible report for the customer to consult.
Conclusion
It is likely that this ransomware attack was undertaken by the Black Basta group, or at least using tools related to their method. Although Black Basta itself is a relatively novel ransomware strain, there is a maturity and sophistication to its tactics. This indicates that this new group are actually experienced threat actors, with evidence pointing towards it being an offshoot of Conti.
The Pyramid of Pain is a well trodden model in cyber security, but it can help us understand the various features of an attack. Indicators like static C2 destinations or file hashes can easily be changed, but it’s the underlying TTPs that remain the same between attacks.
In this case, the attackers used living off the land techniques, making use of tools such as BITSAdmin, as well as using tried and tested malware such as Qakbot. While the domains and IPs involved will change, the way these malware interact and move about systems remains the same. Their fingerprint therefore causes very similar anomalies in network traffic, and this is where the strength of Darktrace lies.
Darktrace’s anomaly-based approach to threat detection means that these new attack types are quickly drawn out of the noise of everyday traffic within an environment. Once attackers have gained a foothold in a network, they will have to cause deviation from the usual pattern of a life on a network to proceed; Darktrace is uniquely placed to detect even the most subtle changes in a device’s behavior that could be indicative of an emerging threat.
Machine learning can act as a force multiplier for security teams. Working hand in hand with the Darktrace SOC, the customer was able to generate cohesive and comprehensive reporting on the attack path within days. This would be a feat for humans alone, requiring significant resources and time, but with the power of Darktrace’s Self-Learning AI, these deep and complex analyses become as easy as the click of a button.
Credit to: Matthew John, Director of Operations, SOC, Paul Jennings, Principal Analyst Consultant
Appendices
Darktrace DETECT Model Breaches
Internal Reconnaissance
Device / Multiple Lateral Movement Model Breaches
Device / Large Number of Model Breaches
Device / Network Scan
Device / Anomalous RDP Followed by Multiple Model Breaches
Device / Possible SMB/NTLM Reconnaissance
Device / SMB Lateral Movement
Anomalous Connection / SMB Enumeration
Anomalous Connection / Possible Share Enumeration Activity
Device / Suspicious SMB Scanning Activity
Device / RDP Scan
Anomalous Connection / Active Remote Desktop Tunnel
Device / Increase in New RPC Services
Device / ICMP Address Scan
Download and Upload
Unusual Activity / Enhanced Unusual External Data Transfer
Unusual Activity / Unusual External Data Transfer
Anomalous Connection / Uncommon 1 GiB Outbound
Anomalous Connection / Data Sent to Rare Domain
Anomalous Connection / Download and Upload
Compliance / SSH to Rare External Destination
Anomalous Server Activity / Rare External from Server
Anomalous Server Activity / Outgoing from Server
Anomalous Connection / Application Protocol on Uncommon Port
Anomalous Connection / Multiple Connections to New External TCP Port
Device / Anomalous SMB Followed By Multiple Model Breaches
Unusual Activity / SMB Access Failures
Lateral Movement and Encryption
User / New Admin Credentials on Server
Compliance / SMB Drive Write
Device / Anomalous RDP Followed By Multiple Model Breaches
Anomalous Connection / High Volume of New or Uncommon Service Control
Anomalous Connection / New or Uncommon Service Control
Device / New or Unusual Remote Command Execution
Anomalous Connection / SMB Enumeration
Additional Beaconing and Tooling
Device / Initial Breach Chain Compromise
Device / Multiple C2 Model Breaches
Compromise / Large Number of Suspicious Failed Connections
Compromise / Sustained SSL or HTTP Increase
Compromise / SSL or HTTP Beacon
Compromise / Suspicious Beaconing Behavior
Compromise / Large Number of Suspicious Successful Connections
Compromise / High Volume of Connections with Beacon Score
Compromise / Slow Beaconing Activity To External Rare
Compromise / SSL Beaconing to Rare Destination
Compromise / Beaconing Activity To External Rare
Compromise / Beacon to Young Endpoint
Compromise / Agent Beacon to New Endpoint
Anomalous Server Activity / Rare External from Server
Anomalous Connection / Multiple Failed Connections to Rare Endpoint
Anomalous File / EXE from Rare External Location
IoC - Type - Description + Confidence
dataspt[.]com - Hostname - Highly Likely Exfiltration Server
46.22.211[.]151:2022 - IP Address and Unusual Port - Highly Likely Exfiltration Server
faceappinc[.]com - Hostname - Likely C2 Infrastructure
Instructions_read_me.txt - Filename - Almost Certain Ransom Note
212.118.55[.]211 - IP Address - Likely C2 Infrastructure
delete[.]me - Filename - Potential lateral movement script
covet[.]me - Filename - Potential lateral movement script
d0ec4b50a944b182fc10ff51f883ccf7 - JA3 Client Fingerprint - Potential Windows BITS C2 Process
/download/cal.linux - URI - Likely BlackBasta executable file
1f4dcfa562f218fcd793c1c384c3006e460213a8 - Sha1 File Hash - Likely BlackBasta executable file

References
[1] https://blogs.blackberry.com/en/2022/05/black-basta-rebrand-of-conti-or-something-new
[2] https://www.cybereason.com/blog/threat-alert-aggressive-qakbot-campaign-and-the-black-basta-ransomware-group-targeting-u.s.-companies
[4] https://unit42.paloaltonetworks.com/atoms/blackbasta-ransomware/
[6] https://www.pcrisk.com/removal-guides/23666-black-basta-ransomware
Blog
Using AI to Help Humans Function Better During a Cyber Crisis



Within cyber security, crises are a regular occurrence. Whether due to the ever-changing tactics of threat actors or the emergence of new vulnerabilities, security teams find themselves under significant pressure and frequently find themselves in what psychologists term "crisis states."1
A crisis state refers to an internal state marked by confusion and anxiety to such an extent that previously effective coping mechanisms give way to ineffective decision-making and behaviors.2
Given the prevalence of crises in the field of cyber security, practitioners are more prone to consistently making illogical choices due to the intense pressure they experience. They also grapple with a constant influx of rapidly changing information, the need for swift decision-making, and the severe consequences of errors in judgment. They are often asked to assess hundreds of variables and uncertain factors.
The frequency of crisis states is expected to rise as generative AI empowers cyber criminals to accelerate the speed, scale, and sophistication of their attacks.
Why is it so challenging to operate effectively and efficiently during a crisis state? Several factors come into play.
Firstly, individuals are inclined to rely on their instincts, rendering them susceptible to cognitive biases. This makes it increasingly difficult to assimilate new information, process it appropriately, and arrive at logical decisions. Since crises strike unexpectedly and escalate rapidly into new unknowns, responders experience heightened stress, doubt and insecurity when deciding on a course of action.
These cognitive biases manifest in various forms. For instance, confirmation bias prompts people to seek out information that aligns with their pre-existing beliefs, while hindsight bias makes past events seem more predictable in light of present context and information.
Crises also have a profound impact on information processing and decision-making. People tend to simplify new information and often cling to the initial information they receive rather than opting for the most rational decision.
For instance, if an organization has successfully thwarted a ransomware attack in the past, a defender might assume that employing the same countermeasures will suffice for a subsequent attack. However, ransomware tactics are constantly evolving, and a subsequent attack could employ different strategies that evade the previous defenses. In a crisis state, individuals may revert to their prior strategy instead of adapting based on the latest information.
Given there are deeply embedded psychological tendencies and hard-wired decision-making processes leading to a reduction in logic during a crisis, humans need support from technology that does not suffer from the same limitations, particularly in the post-incident phase, where stress levels go into overdrive.
In the era of rapidly evolving novel attacks, security teams require a different approach: AI.
AI can serve as a valuable tool to augment human decision-making, from detection to incident response and mitigation. This is precisely why Darktrace introduced HEAL, which leverages self-learning AI to assist teams in increasing their cyber resilience and managing live incidents, helping to alleviate the cognitive burden they face.
Darktrace HEAL™ learns from your environment, including data points from real incidents and generates simulations to identify the most effective approach for remediation and restoring normal operations. This reduces the overwhelming influx of information and facilitates more effective decision-making during critical moments.
Furthermore, HEAL offers security teams the opportunity to safely simulate realistic attacks within their own environment. Using specific data points from the native environment, simulated incidents prepare security teams for a variety of circumstances which can be reviewed on a regular basis to encourage effective habit forming and reduce cognitive biases from a one-size-fits-all approach. This allows them to anticipate how attacks might unfold and better prepare themselves psychologically for potential real-world incidents.
With the right models and data, AI can significantly mitigate human bias by providing remediation recommendations grounded in evidence and providing proportionate responses based on empirical evidence rather than personal interpretations or instincts. It can act as a guiding light through the chaos of an attack, providing essential support to human security teams.
1 www.cybersecuritydive.com/news/incident-response-impacts-wellbeing/633593
2 blog.bcm-institute.org/crisis-management/making-decision-during-a-crisis